Μετάβαση στο περιεχόμενο

1-χλωροβουτάνιο

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
1-χλωροβουτάνιο
Γενικά
Όνομα IUPAC 1-χλωροβουτάνιο
Άλλες ονομασίες 1-βουτυλοχλωρίδιο
Χημικά αναγνωριστικά
Χημικός τύπος C4H9Cl
Μοριακή μάζα 92,57 amu
Σύντομος
συντακτικός τύπος
CH3CH2CH2CH2Cl
Συντομογραφίες BuCl
Αριθμός CAS 109-69-3
SMILES CCCCCl
InChI 1S/C4H9Cl/c1-2-3-4-5/h2-4H2,1H3
Αριθμός UN ZP7R667SGD
PubChem CID 8005
ChemSpider ID 7714
Δομή
Ισομέρεια
Ισομερή θέσης 3
2-χλωροβουτάνιο
μεθυλο-1-χλωροπροπάνιο
μεθυλο-2-χλωροπροπάνιο
Φυσικές ιδιότητες
Σημείο τήξης -123 °C
Σημείο βρασμού 79 °C
Πυκνότητα 880 kg/m3
Εμφάνιση Υγρό
Χημικές ιδιότητες
Επικινδυνότητα
Κίνδυνοι κατά
NFPA 704

3
1
1
 
Εκτός αν σημειώνεται διαφορετικά, τα δεδομένα αφορούν υλικά υπό κανονικές συνθήκες περιβάλλοντος (25°C, 100 kPa).

To 1-χλωροβουτάνιο ή 1-βουτυλοχλωρίδιο είναι ένα υγρό (στις συνηθισμένες συνθήκες, T = 25 °C, P = 1 atm) αλκυλογονίδιο. Με βάση το χημικό τύπο του, C4H9F, έχει τα ακόλουθα τρία (3) ισομερές θέσης:

  1. 2-χλωροβουτάνιο.
  2. Μεθυλο-1-χλωροπροπάνιο.
  3. Μεθυλο-2-χλωροπροπάνιο.

Η ονομασία «χλωροβουτάνιο» προέρχεται από την ονοματολογία κατά IUPAC. Συγκεκριμένα, το πρόθεμα «βουτ-» δηλώνει την παρουσία τεσσάρων (4) ατόμων άνθρακα ανά μόριο της ένωσης, το ενδιάμεσο «-αν-» δείχνει την παρουσία μόνο απλών δεσμών μεταξύ ατόμων άνθρακα στο μόριο και η κατάληξη «-ιο» φανερώνει ότι δεν περιέχει χαρακτηριστικές ομάδες που έχουν χαρακτηριστικές καταλήξεις. Το αρχικό πρόθεμα «χλωρο-» δηλώνει την παρουσία ενός (1) ατόμου χλωρίου ανά μόριο της ένωσης. Τέλος, ο αρχικός αριθμός θέσης «1-», δηλώνει τον αριθμό θέσης του ατόμου του άνθρακα με το οποίο ενώνεται το άτομο του χλωρίου, για να διαχωριστεί η ένωση από την ισομερή της 2-χλωροβουτάνιο.

Δεσμοί[1]
Δεσμός τύπος δεσμού ηλεκτρονική δομή Μήκος δεσμού Ιονισμός
C-H σ 2sp3-1s 109 pm 3% C- H+
C-C σ 2sp3-2sp3 154 pm
C-Cl σ 2sp3-3sp3 176 pm 9% C+ Cl-
Κατανομή φορτίων
σε ουδέτερο μόριο
H +0,03
C#1 +0,03
C#2,#3 -0,06
C#4 -0,09
Cl -0,09

Με φωτοχημική χλωρίωση

[Επεξεργασία | επεξεργασία κώδικα]

Με φωτοχημική χλωρίωση βουτανίου παράγεται μίγμα 1-χλωροβουτανίου και 2-χλωροβουτανίου[2]:

  • Ακολουθεί το συνηθισμένο μηχανισμό φωτοχημικής αλογόνωσης αλκανίων. Παράγονται και πολυχλωροπαράγωγα. Η συγκέντρωση των τελευταίων περιορίζεται με χρήση περίσσειας βουτανίου.
  • Η αναφερόμενη στοιχειομετρική αναλογία παραγωγής χλωροβουτανίων δεν συνυπολογίζει τα συμπαραγόμενα πολυχλωροπαράγωγα.
  • Η μέθοδος δεν είναι χρήσιμη αν επιθυμείται το ένα μόνο ισομερές, αφού είναι σχετικά δύσκολος ο διαχωρισμός.

Με υποκατάσταση υδροξυλίου από χλώριο

[Επεξεργασία | επεξεργασία κώδικα]

1. Με επίδραση υδροχλωρίου (HCl) σε 1-βουτανόλη (CH3CH2CH2CH2OH)[3]:

2. Η υποκατάσταση του OH από Cl στην 1-βουτανόλη μπορεί να γίνει και με χλωριωτικά μέσα[4]:

1. Με πενταχλωριούχο φωσφόρο (PCl5):

2. Με τριχλωριούχο φωσφόρο (PCl3):

3. Με θειονυλοχλωρίδιο (SOCl2):

Με προσθήκη χλωραιθανίου σε αιθένιο

[Επεξεργασία | επεξεργασία κώδικα]

Με προσθήκη χλωραιθάνιου σε αιθένιο παράγεται 1-χλωροβουτάνιο[5]::

Με προσθήκη χλωρομεθανίου σε κυκλοπροπάνιο

[Επεξεργασία | επεξεργασία κώδικα]

Με προσθήκη χλωρομεθανίου σε κυκλοπροπάνιο παράγεται 1-χλωροβουτάνιο[6]:

κυκλοπροπάνιο

Με προσθήκη υδροχλωρίου σε κυκλοβουτάνιο

[Επεξεργασία | επεξεργασία κώδικα]

Με προσθήκη υδροχλωρίου (ΗCl) σε κυκλοβουτάνιο παράγεται 1-χλωροβουτάνιο[7]:

κυκλοβουτάνιο

Χημικές ιδιότητες και παράγωγα

[Επεξεργασία | επεξεργασία κώδικα]

Αντιδράσεις υποκατάστασης

[Επεξεργασία | επεξεργασία κώδικα]
  • Οι αντιδράσεις είναι πολύ πιο αργές σε σύγκριση με τα αντίστοιχα αλκυλαλογονίδια των άλλων αλογόνων, γιατί ο μηχανισμός που επικρατεί σ' αυτές τις αντιδράσεις υποκαταστάσεως είναι ο SN2.

Υποκατάσταση από υδροξύλιο

[Επεξεργασία | επεξεργασία κώδικα]

Κατά την υδρόλυσή του με εναιώρημα υδροξειδίου του αργύρου (AgOH) σχηματίζεται 1-βουτανόλη (CH3CH2CH2CH2OH)[8]:

Υποκατάσταση από αλκοξύλιο

[Επεξεργασία | επεξεργασία κώδικα]

Με αλκοολικά άλατα (RONa) σχηματίζει αλκυλoβουτυλαιθέρα (CH3CH2CH2CH2OR)[8]:

Υποκατάσταση από αλκινύλιο

[Επεξεργασία | επεξεργασία κώδικα]

Με αλκινικά άλατα (RC≡CNa) σχηματίζει αλκίνιο (RC≡CCH2CH2CH2CH3). Π.χ.[8]:

Υποκατάσταση από ακύλιο

[Επεξεργασία | επεξεργασία κώδικα]

Με καρβονικά άλατα (RCOONa) σχηματίζει καρβονικό βουτυλεστέρα (RCOOCH2CH2CH2CH3)[8]:

Υποκατάσταση από κυάνιο

[Επεξεργασία | επεξεργασία κώδικα]

Με κυανιούχο νάτριο (NaCN) σχηματίζει πεντανονιτρίλιο (CH3CH2CH2CH2CN)[8]:

Υποκατάσταση από αλκύλιο

[Επεξεργασία | επεξεργασία κώδικα]

Με αλκυλολίθιο (RLi) σχηματίζει αλκάνιο[8]:

Υποκατάσταση από σουλφυδρίλιο

[Επεξεργασία | επεξεργασία κώδικα]

Με όξινο θειούχο νάτριο (NaSH) σχηματίζει 1-βουτανοθειόλη (CH3CH2CH2CH2SH)[8]:

Υποκατάσταση από σουλφαλκύλιο

[Επεξεργασία | επεξεργασία κώδικα]

Με θειολικό νάτριο (RSNa) σχηματίζει αλκυλοβουτυλοθειαιθέρα (RSCH2CH2CH2CH3)[8]:

Υποκατάσταση από ιώδιο

[Επεξεργασία | επεξεργασία κώδικα]

Με ιωδιούχο νάτριο (NaI) σχηματίζει 1-ιωδοβουτάνιο (CH3CH2CH2CH2I)[8]:

Υποκατάσταση από φθόριο

[Επεξεργασία | επεξεργασία κώδικα]

Με επίδραση φθοριούχου υφυδραργύρου (Hg2F2) σε 1-χλωροβουτάνιο (CH3CH2CH2CH2Cl) παράγεται 1-φθοροβουτάνιο[9]:

Υποκατάσταση από αμινομάδα

[Επεξεργασία | επεξεργασία κώδικα]

Με αμμωνία (NH3) σχηματίζει 1-βουταναμίνη (CH3CH2CH2CH2NH2)[8]:

Υποκατάσταση από αλκυλαμινομάδα

[Επεξεργασία | επεξεργασία κώδικα]

Με πρωυτοταγείς αμίνες (RNH2) σχηματίζει N-αλκυλο-1-βουταναμίνη (RNHCH2CH2CH2CH3)[8]:

Υποκατάσταση από διαλκυλαμινομάδα

[Επεξεργασία | επεξεργασία κώδικα]

Με δευτεροταγείς αμίνες (R'NHR) σχηματίζει N,N-διαλκυλο-1-βουταναμίνη [R'N(CH2CH2CH2CH3)R][8]:

Υποκατάσταση από τριαλκυλαμινομάδα

[Επεξεργασία | επεξεργασία κώδικα]

Με τριτοταγείς αμίνες [R'N(R)R"] σχηματίζει χλωριούχο N,N,N-τριαλκυλοβουτυλαμμώνιο {[R'N(CH2CH2CH2CH3)(R)R"]Cl}[10]:

Υποκατάσταση από φωσφύλιο

[Επεξεργασία | επεξεργασία κώδικα]

Με φωσφίνη σχηματίζει 1-βουτανοφωσφαμίνη[11]:

Υποκατάσταση από νιτροομάδα

[Επεξεργασία | επεξεργασία κώδικα]

Με νιτρώδη άργυρο (AgNO2) σχηματίζει 1-νιτροβουτάνιο (CH3CH2CH2CH2NO2)[12]:

Υποκατάσταση από φαινύλιο

[Επεξεργασία | επεξεργασία κώδικα]

Με επίδραση τύπου Clriedel-Crafts σε βενζολίου παράγεται βουτυλοβενζόλιο:

Παραγωγή οργανομεταλλικών ενώσεων

[Επεξεργασία | επεξεργασία κώδικα]

1. Με λίθιο (Li σχηματίζει βουτυλολίθιο[13][14]:

2. Με μαγνήσιο (Mg) σχηματίζει βουτυλομαγνησιοχλωρίδιο [15]:

1. Με λιθιοαργιλλιοϋδρίδιο (LiAlH4) παράγεται βουτάνιο.[16]:

2. Με «υδρογόνο εν τω γενάσθαι», δηλαδή μέταλλο + οξύ παράγεται βουτάνιο.[17]:

3. Με σιλάνιο, παρουσία τριχλωριούχου βορίου, παράγεται βουτάνιο[18]:

4. Αναγωγή από ένα αλκυλοκασσιτεράνιο. Π.χ.[19]:

Αντιδράσεις προσθήκης

[Επεξεργασία | επεξεργασία κώδικα]

1. Σε αλκένια. Π.χ. με αιθένιο (CH2=CH2) παράγει 1-χλωρεξάνιο (CH3CH2CH2CH2CH2CH2Cl)[20]:

2. Σε αλκίνια. Π.χ. με αιθίνιο (HC≡CH) παράγει 1-χλωρο-1-εξένιο (CH3CH2CH2CH2CH=CHCl)[21]:

3. Η αντίδραση του 1-χλωροβουτανίου με συζυγή αλκαδιένια αντιστοιχεί κυρίως σε 1,4-προσθήκη, αν και είναι επίσης δυνατές η 1,2-προσθήκη και η 3,4-προσθήκη, με τη χρήση κατάλληλων συνθηκών. Π.χ[22]:

(1,4-προσθήκη)
(1,2-προσθήκη)
(3,4-προσθήκη)

4. Σε κυκλοαλκάνια που έχουν τριμελή ή τετραμελή δακτύλιο. Π.χ. με κυκλοπροπάνιο παράγει 1-χλωρεπτάνιο[23]:

κυκλοπροπάνιο

5. Σε ετεροκυκλικές ενώσεις που έχουν τριμελή ή τετραμελή δακτύλιο. Π.χ. με εποξυαιθάνιο παράγει βουτοξυ-2-χλωραιθάνιο[24]:

Αντίδραση απόσπασης

[Επεξεργασία | επεξεργασία κώδικα]

Με απόσπαση υδροχλωρίου (HCl) από 1-χλωροβουτάνιο παράγεται 1-βουτένιο[25]:

Παρεμβολή καρβενίων

[Επεξεργασία | επεξεργασία κώδικα]
  • Τα καρβένια (π.χ. [:CH2]) μπορούν παρεμβληθούν στους δεσμούς C-H. Π.χ. έχουμε[26]:

  • Η αντίδραση είναι ελάχιστα εκλεκτική και αυτό σημαίνει ότι κατά προσέγγιση έχουμε;
1. Παρεμβολή στους τρεις (3) δεσμούς CH2-H. Παράγεται 1-χλωροπεντάνιο.
2. Παρεμβολή στους δυο (2) δεσμούς C#2H-H: Παράγεται 2-μεθυλο-1-χλωροβουτάνιο.
3. Παρεμβολή στους δυο (2) δεσμούς C#3H-H: Παράγεται 3-μεθυλο-1-χλωροβουτάνιο.
4. Παρεμβολή στους δυο (2) δεσμούς C#1H-H: Παράγεται 2-χλωροπεντάνιο.

Προκύπτει επομένως μίγμα 1-χλωροπεντάνιου ~33%, 2-μεθυλο-1-χλωροβουτάνιου ~22%, 3-μεθυλο-1-χλωροβουτάνιου ~22% και 2-χλωροπεντάνιου ~22%.

Σημειώσεις και αναφορές

[Επεξεργασία | επεξεργασία κώδικα]
  1. Τα δεδομένα προέρχονται εν μέρει από το «Table of periodic properties of thw Ellements», Sagrent-Welch Scientidic Company και Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, Σελ. 34.
  2. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 155, §6.7.2, R = CH3CH2CH2CH2, CH3CH2CHCH3, X = Cl.
  3. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 185, §7.2.1, R = CH3CH2CH2CH2, X = Cl.
  4. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 185, §7.2.2, R = CH2CH2CH2CH3.
  5. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, για Ε = CH2CH3 και Nu = Cl.
  6. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, εφαρμογή για κυκλοαλκάνια και για Ε = CH3 και Nu = Cl σε συνδυασμό με Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985, §1.2., σελ. 22-25
  7. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, εφαρμογή για κυκλοαλκάνια και για Ε = Η και Nu = Cl σε συνδυασμό με Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985, §1.2., σελ. 22-25
  8. 8,00 8,01 8,02 8,03 8,04 8,05 8,06 8,07 8,08 8,09 8,10 8,11 Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 186, §7.3.1.
  9. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 185, §7.2.8.
  10. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 243, §10.2.Α, R = CH2CH2CH2CH3, X = Cl.
  11. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 267, §11.3.Α1, R = CH3CH2CH2CH2, X = Cl.
  12. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 244, §10.3.Α, R = CH2CH2CH2CH3, X = Cl.
  13. Brandsma, L.; Verkraijsse, H. D. (1987). Preparative Polar Organometallic Chemistry I. Berlin: Springer-Verlag. ISBN 3-540-16916-4. CS1 maint: Πολλαπλές ονομασίες: authors list (link)
  14. Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991, §5.1. σελ.82
  15. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 187, §7.3.5, R = CH2CH2CH2CH3, X = Cl.
  16. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 187, §7.3.3α, R = CH2CH2CH2CH3, X = Cl.
  17. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 187, §7.3.3β, R = CH2CH2CH2CH3, X = Cl.
  18. Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991, σελ. 291-293, §19.1.
  19. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, Σελ. 42, §4.3.
  20. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, για Ε = CH3CH2CH2CH2 και Nu = Cl.
  21. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, εφαρμογή για αλκίνια και για Ε = CH3CH2CH2CH2 και Nu = Cl με βάση και την §8.1, σελ. 114-116.
  22. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, εφαρμογή για αλκαδιένια και για Ε = CH3CH2CH2CH2 και Nu = Cl με βάση και την §8.2, σελ. 116-117.
  23. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, εφαρμογή για κυκλοαλκάνια και για Ε = CH3CH2CH2CH2 και Nu = Cl σε συνδυασμό με Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985, §1.2., σελ. 22-25
  24. Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985, §2.1., σελ. 16-17, εφαρμογή γενικής αντίδρασης για Nu = Cl.
  25. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.153, §6.3.1α.
  26. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 155, §6.7.3.
  • Γ. Βάρβογλη, Ν. Αλεξάνδρου, Οργανική Χημεία, Αθήνα 1972
  • Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991
  • SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999
  • Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982
  • Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985