1,2-βουταδιένιο

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Μετάβαση σε: πλοήγηση, αναζήτηση
1,2-βουταδιένιο
Buta-1,2-dien.svg
1,2-Butadien.png
Γενικά
Όνομα IUPAC 1,2-βουταδιένιο
Άλλες ονομασίες Μεθυλαλλένιο
Χημικά αναγνωριστικά
Χημικός τύπος C4H6
Μοριακή μάζα 54.091 amu
Σύντομος
συντακτικός τύπος
CH3CH=C=CH2
Συντομογραφίες MeCH=C=CH2
Αριθμός CAS 590-19-2
SMILES CC=C=C
Δομή
Μήκος δεσμού C-H: 106 pm
Είδος δεσμού C-H: σ (2sp2-1s)
C=C=C: σ (2sp2-2sp-2sp2)
π1-2 (2py-2py)
π2-3 (2pz-2pz)
Πόλωση δεσμού C--H+: 3%
Ισομέρεια
Ισομερή θέσης 8
Φυσικές ιδιότητες
Σημείο τήξης −136,21 °C
Σημείο βρασμού 10,8 °C
Κρίσιμη θερμοκρασία 176 °C[1]
Πυκνότητα 650 kg/m3 (15 °C)
Τάση ατμών 0,14 MPa (20 °C)
Εμφάνιση Άχρωμο αέριο
Χημικές ιδιότητες
Θερμότητα πλήρους
καύσης
2.381 kJ
Σημείο αυτανάφλεξης 340 °C
Επικινδυνότητα
Εκτός αν σημειώνεται διαφορετικά, τα δεδομένα αφορούν υλικά υπό κανονικές συνθήκες (25°C, 100 kPa).

Το 1,2-βουταδιένιο[2] (αγγλικά: 1,2-butadiene) είναι οργανική χημική ένωση, που περιέχει άνθρακα και υδρογόνο, με μοριακό τύπο C5H8 και ημισυντακτικό τύπο CH3CH=C=CH2. Ανήκει στην ομόλογη σειρά των αλκαδιενίων και στην κατηγορία των αλλενίων.

Το χημικά καθαρό 1,2-βουταδιένιο, στις «κανονικές συνθήκες περιβάλλοντος», δηλαδή σε θερμοκρασία 25 °C και υπό πίεση 1 atm, είναι εξαιρετικά εύφλεκτο αέριο.

Δομή[Επεξεργασία | επεξεργασία κώδικα]

Αυτός ο υδρογονάνθρακας έχει μόριο που αποτελείται από τρία (3) άτομα υδρογόνου και ένα μεθύλιο (-CH3) ενωμένα με μια τριάδα ατόμων άνθρακα, που συνδέονται μεταξύ τους με δύο διαδοχικούς διπλούς δεσμούς. Το #1 και το #3 άτομα άνθρακα, που περιέχει, βρίσκονται σε υβριδισμό sp², το #2 σε sp, ενώ τέλος το #4 σε sp³. Οι δεσμοί H-C#1-H και H-C#1=C#2 σχηματίζουν γωνίες περί τις 120°. Τα επίπεδα των δεσμών H-C#1-H και H-C#3-C#4 είναι κάθετα μεταξύ τους.

Η περιστροφή των δεσμών C=C=C απαιτεί (σχετικά) υψηλή ποσότητα ενέργειας, γιατί απαιτεί την (προσωρινή) διάσπαση ενός τουλάχιστον π-δεσμού.

Οι π-δεσμοί στο μόριο του 1,2-βουταδιενίου είναι υπεύθυνοι για τη χρήσιμη δραστικότητά του. Η περιοχή των διπλών δεσμών χαρακτηρίζεται από (σχετικά) υψηλή ηλεκτρονιακή πυκνότητα, ιδιαίτερα περί το #2 άτομο άνθρακα,που επομένως είναι ευάλωτη σε επιδράσεις ηλεκτρονιόφιλων. Πολλές αντιδράσεις του 1,2-βουταδιενίου καταλύνται από διάφορα μέταλλα μετάπτωσης, που σχηματίζουν προσωρινά σύμπλοκα με τα π και π* τροχιακά του 1,2-βουταδιενίου.

Δεσμοί[3]
Δεσμοί τύπος δεσμού ηλεκτρονική δομή Μήκος δεσμού Ιονισμός
C#4-H σ 2sp3-1s 109 pm 3% C- H+
C#1-H

C#3-H

σ 2sp2-1s 108,7 pm 3% C- H+
C#3-C#2 σ 2sp3-2sp2 151 pm
C#3-C#4 σ 2sp3-2sp3 154 pm
C#1=C#2 σ

π

2sp2-2sp

2py-2py

131,4 pm
C#2=C#3 σ

π

2sp-2sp2

2pz-2pz

131,4 pm
Κατανομή φορτίωνσε ουδέτερο μόριο
C#4 -0,09
C#1 -0,06
C#3 -0,03
C#2 0,00
H +0,03

Παραγωγή[Επεξεργασία | επεξεργασία κώδικα]

Με απόσπαση αλογόνου[Επεξεργασία | επεξεργασία κώδικα]

Με απόσπαση δύο (2) ισοδυνάμων αλογόνου (X2) από 1,2,2,3-τετραλοβουτάνιο παράγεται 1,2-βουταδιένιο[4]:

Χημικές ιδιότητες και παράγωγα[Επεξεργασία | επεξεργασία κώδικα]

Καύση[Επεξεργασία | επεξεργασία κώδικα]

Οζονόλυση[Επεξεργασία | επεξεργασία κώδικα]

Με επίδραση όζοντος (O3, οζονόλυση) σε 1,2-βουταδιένιο, παράγεται ασταθές οζονίδιο που τελικά διασπάται σε μεθανάλη, αιθανάλη και διοξείδιο του άνθρακα[5]:

Διυδροξυλίωση[Επεξεργασία | επεξεργασία κώδικα]

Η διυδροξυλίωση 1,2-βουταδιενίου, αντιστοιχεί σε προσθήκη υπεροξειδίου του υδρογόνου (H2O2)[6]:

1. Επίδραση αραιού διαλύματος υπερμαγγανικού καλίου (KMnO4). Παράγει 1-υδροξυ-2-βουτανόνη:

2. Επίδραση καρβοξυλικού οξέος και υπεροξείδιου του υδρογόνου. Παράγει

3. Μέθοδος Σάρπλες (Sharpless). Παράγει 1-υδροξυ-2-βουτανόνη:

4. Μέθοδος Γούντγαρντ (Woodward). Παράγει 1-υδροξυ-2-βουτανόνη:

5. Υπάρχει ακόμη δυνατότητα για 1,3-διυδροξυλίωση με επίδραση αλδευδών ή κετονών σε 1,2-βουταδιένιο, παρουσία νερού (H2O). Αντίδραση Πρινς (Prins). Π.χ. με μεθανάλη παράγεται 1-υδροξυ-3-πεντανόνη:

  • Ενδιάμεσα παράγεται 3-πεντεν-1,3-διόλη [CH3CH=C(OH)CH2CH2OH, ασταθής ενόλη], που ισομερειώνεται σε 1-υδροξυ-3-πεντανόνη.

Επίδραση πυκνού υπερμαγγανικού καλίου[Επεξεργασία | επεξεργασία κώδικα]

Με επίδραση πυκνού διαλύματος υπερμαγγανικού καλίου (KMnO4) παράγεται τελικά αιθανικό οξύ και διοξείδιο του άνθρακα[7]:

Ενυδάτωση[Επεξεργασία | επεξεργασία κώδικα]

1. Επίδραση θειικού οξέος (H2SO4) και στη συνέχεια νερού (H2O, ενυδάτωση). Παράγεται βουτανόνη[8]:

  • Ενδιάμεσα παράγεται 2-βουεν-2-όλη [CH3CH=C(OH)CH3, ασταθής ενόλη] που ισομερειώνεται σε βουτανόνη.

2. Υδροβορίωση και στη συνέχεια επίδραση με υπεροξείδιο του υδρογόνου (Η2Ο2). Παράγεται τρι(2-βουτενυλο)βοράνιο και στη συνέχεια 2-βουτεν-1-όλη[9]:

3. Αντίδραση με οξικό υδράργυρο [(CH3COO)2Hg] και έπειτα αναγωγή. Παράγεται βουτανόνη:

  • Ενδιάμεσα παράγεται 2-βουτεν-2-όλη (ασταθής ενόλη), που τελικά ισομερειώνεται σε βουτανόνη.

4. Υπάρχει ακόμη η δυνατότητα αλλυλικής υδροξυλίωσης κατά Πρινς (Prins) με επίδραση αλδευδών ή κετονών σε προπαδιένιο απουσία νερού. Π.χ. με μεθανάλη προκύπτει 2-μεθυλο-2,3-πενταδιεν-1-όλη:

Προσθήκη υποαλογονώδους οξέως[Επεξεργασία | επεξεργασία κώδικα]

Με επίδραση (προσθήκη) υποαλογονώδους οξέος (HOX) σε 1,2-βουταδιένιο παράγεται 1-αλοβουτανόνη[10]:

  • Ενδιάμεσα παράγεται 1-αλο-2-βουτεν-2-όλη (ασταθής ενόλη), που τελικά ισομερειώνεται σε 1-αλοβουτανόνη
  • Η παραπάνω αντίδραση ισχύει όταν X: Cl, Br και I. Αν X = F, παράγεται 2-φθορο-2-βουτεν-1-όλη:

Καταλυτική υδρογόνωση[Επεξεργασία | επεξεργασία κώδικα]

Με καταλυτική υδρογόνωση 1,2-βουταδιενίου σχηματίζεται αρχικά 2-βουτένιο και στη συνέχεια (με περίσσεια υδρογόνου) βουτάνιο[11]:

Αλογόνωση[Επεξεργασία | επεξεργασία κώδικα]

1. Με προσθήκη αλογόνου (X2, αλογόνωση) σε 1,2-βουταδιένιο έχουμε προσθήκη στους διπλούς δεσμούς. Παράγεται αρχικά 1,2-διαλο-2-βουτένιο και στη συνέχεια, με περίσσεια αλογόνου, 1,2,2,3-τετραλοβουτάνιο. Π.χ.[12]:

2. Υποκατάσταση σε αλλυλική θέση, δηλαδή σε α θέση ως προς τους διπλούς δεσμούς. Παράγεται 4-αλο-1,2-βουταδιένιο: Π.χ.:

Υδραλογόνωση[Επεξεργασία | επεξεργασία κώδικα]

Με προσθήκη υδραλογόνων (HX, υδραλογόνωση) σε 1,2-βουταδιένιο παράγεται αρχικά 2-αλο-2-βουτένιο και στη συνέχεια, με περίσσεια υδραλογόνου, 2,2-διαλοβουτάνιο[13]:

Υδροκυάνωση[Επεξεργασία | επεξεργασία κώδικα]

Με προσθήκη υδροκυανίου (HCN, υδροκυάνωση) σε 1,2-βουταδιένιο παράγεται 2-μεθυλοπροπεν-2-νιτρίλιο:

Καταλυτική αμμωνίωση[Επεξεργασία | επεξεργασία κώδικα]

1. Προσθήκη αμμωνίας (NH3). Παράγεται αρχικά 2-βουτεν-2-αμίνη, που τελικά ισομερειώνεται σε 2-βουτενιμίνη:

  • Τα παραπάνω μέταλλα που αναφέρονται στη θέση του καταλύτη χρησιμοποιούνται με τη μορφή συμπλόκων τους και όχι σε μεταλλική μορφή.

2. Προσθήκη πρωτοταγούς αμίνης. Π.χ. με μεθυλαμίνη παράγεται Ν-μεθυλο-2-βουτεν-2-αμίνη, που τελικά ισομερειώνεται σε Ν-μεθυλο-2-βουτεν-2-ιμίνη:

3. Προσθήκη δευτεροταγούς αμίνης. Π.χ. με διμεθυλαμίνη παράγεται N,N-διμεθυλο-2-βουτεν-2-αμίνη:

Καταλυτική φορμυλίωση[Επεξεργασία | επεξεργασία κώδικα]

Με προσθήκη μεθανάλης (CO + H2) σε 1,2-βουταδιένιο παράγεται 2-μεθυλο-2-βουτενάλη ή 3-πεντενάλη. Π.χ.:

  • Τα παραπάνω μέταλλα που αναφέρονται στη θέση του καταλύτη χρησιμοποιούνται με τη μορφή συμπλόκων τους και όχι σε μεταλλική μορφή.
  • Όπου . Εξαρτάται από την επιλογή του καταλύτη. Οι σχετικά ογκώδεις καταλύτες ευνοούν το δεύτερο παραγωγο.

Προσθήκη αλδεΰδών ή κετονών κατά Prins[Επεξεργασία | επεξεργασία κώδικα]

Με επίδραση περίσσειας αλδευδών ή κετονών σε προπένιο απουσία νερού, σε χαμηλή θερμοκρασία παράγεται παράγωγο διοξανίου. Π.χ. με μεθανάλη παράγεται 4-αιθυλιδενο-1,3-διοξάνιο και 5-αιθυλιδενο-1,3-διοξάνιο:

4-ethylidene-1,3-dioxane.svg 5-ethylidene-1,3-dioxane.svg

Αντίδραση Diels–Adler[Επεξεργασία | επεξεργασία κώδικα]

Κατά την επίδραση αλκαδιενίου (διένιου) σε 1,2-βουταδιένιο (διενόφιλο) έχουμε την ονομαζόμενη (αντίδραση Ντιλς-Άλντερ) που οδηγεί σε παραγωγή παραγώγου κυκλοεξενίου. Π.χ. με 1,3-βουταδιένιο παίρνουμε 4-αιθυλιδενοκυκλοεξένιο[14]:

4-ethylidenecyclohexene.svg

Αντίδραση Pauson-Khand[Επεξεργασία | επεξεργασία κώδικα]

Κατά την επίδραση αλκίνια και μονοξειδίου του άνθρακα (CO) σε 1,2--βουταδιένιο έχουμε την ονομαζόμενη αντίδραση Παύσον-Χαντ (Pauson-Khand) που στην περίπτωση αυτή οδηγεί σε παραγωγή παραγώγων κυκλοπεντενόνης. Π.χ. με αιθίνιο παράγεται μείγμα από 4-αιθυλιδενο-2-κυκλοπεντενόνη και 5-αιθυλιδενο-2-κυκλοπεντενόνη:

4-ethylenocyclopenten-2-one.svg 5-ethylenecyclopenten-2-one.svg

Πηγές[Επεξεργασία | επεξεργασία κώδικα]

  • Speight J. G., “Chemical and Process Design Handbook”, McGraw-Hill, 2002.
  • Γ. Βάρβογλη, Ν. Αλεξάνδρου, Οργανική Χημεία, Αθήνα 1972
  • Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991
  • SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999
  • Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982

Παραπομπές[Επεξεργασία | επεξεργασία κώδικα]

  1. Δικτυακός τόπος: Gas Encyclopaedia
  2. Για εναλλακτικές ονομασίες δείτε τον πίνακα πληροφοριών.
  3. Τα δεδομένα προέρχονται εν μέρει από το «Table of periodic properties of thw Ellements», Sagrent-Welch Scientidic Company και Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, Σελ. 34.
  4. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.153, §6.3.1β.
  5. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 157, §6.8.10.
  6. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 157, §6.8.9.
  7. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 158, §6.9.8.
  8. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 156, §6.8.3.
  9. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 156, §6.8.5.
  10. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 156, §6.8.4.
  11. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 156, §6.8.6.
  12. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 156, §6.8.2.
  13. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 156, §6.8.1.
  14. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 160, §6.10.2.
Στο λήμμα αυτό έχει ενσωματωθεί κείμενο από το λήμμα 1,2-Butadien της Γερμανικής Βικιπαίδειας, η οποία διανέμεται υπό την GNU FDL και την CC-BY-SA 3.0. (ιστορικό/συντάκτες).