Αιθανόλη

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
(Ανακατεύθυνση από Αιθυλική αλκοόλη)
Μετάβαση σε: πλοήγηση, αναζήτηση
Αιθανόλη
Ethanol-2D-skeletal.svg
Ethanol-2D-flat.png
Ethanol-3D-vdW.png
Ethanol-3D-balls.png
Γενικά
Όνομα IUPAC Αιθανόλη
Άλλες ονομασίες Αιθυλική αλκοόλη
Οινόπνευμα
Υδροξυαιθάνιο
Μεθυλοκαρβινόλη
1-Οξαπροπάνιο
Χημικά αναγνωριστικά
Χημικός τύπος C2H6O
Μοριακή μάζα 46,07 amu
Σύντομος
συντακτικός τύπος
C2H5OH
Συντομογραφίες EtOH
Αριθμός CAS 64-17-5
SMILES CCO
InChI 1S/C2H6O/c1-2-3/h3H,2H2,1H3
Αριθμός EINECS 200-578-6
Αριθμός RTECS KQ6300000
Αριθμός UN 1170
PubChem CID 702
ChemSpider ID 682
Δομή
Διπολική ροπή 1,69 D
Ισομέρεια
Ισομερή θέσης 1
Διμεθυλαιθέρας
Φυσικές ιδιότητες
Σημείο τήξης −114 °C
Σημείο βρασμού 78 °C
Πυκνότητα 789 kg/m3
Διαλυτότητα
στο νερό
Ανάμιξη σε κάθε αναλογία
Ιξώδες 1,5 mPa·s (20 °C)
Δείκτης διάθλασης ,
nD
1,36
Τάση ατμών 5,95 kPa (20 °C)
Εμφάνιση Άχρωμο υγρό
Χημικές ιδιότητες
pKa 15,9
Ελάχιστη θερμοκρασία
ανάφλεξης
13-14 °C
Σημείο αυτανάφλεξης 362 °C
Επικινδυνότητα
Hazard F.svg
Eύφλεκτη (F)
Φράσεις κινδύνου R11
Φράσεις ασφαλείας (S2), S7, S16
LD50 5,628 g/kg
Κίνδυνοι κατά
NFPA 704
NFPA 704.svg
3
2
0
Η κατάσταση αναφοράς είναι η πρότυπη κατάσταση (25°C, 1 Atm)
εκτός αν σημειώνεται διαφορετικά

Η αιθανόλη[1] είναι οργανική χημική ένωση, που περιέχει άνθρακα, υδρογόνο και οξυγόνο, με χημικό τύπο C2H6O, αν και παριστάνεται συχνά και με τους τύπους C2H5OH, CH3CH2OH και EtOH. Οι τύποι αυτοί δείχνουν ότι το μόριο της αιθανόλης αποτελείται από μια αιθυλομάδα και μια «υδροξυλομάδα» (OH). Η αιθανόλη ανήκει στην ομόλογη σειρά των «αλκανολών», δηλαδή των άκυκλων κορεσμένων μονοαλκοολών. Έχει ένα ισομερές θέσης, το διμεθυλαιθέρα (CH3OCH3). Η καθαρή («απόλυτη») αιθανόλη, στις «συνηθισμένες συνθήκες», δηλαδή θερμοκρασία 25°C και πίεση 1 atm, είναι ένα πτητικό, εύφλεκτο και άχρωμο υγρό. Είναι ένα ψυχοενεργό ναρκωτικό, και ένα από τα παλαιότερα ψυχαγωγικά ποτά, που ακόμη χρησιμοποιείται για αυτόν το σκοπό από τους ανθρώπους. Η αιθανόλη μπορεί να προκαλέσει αλκοολική δηλητηρίαση, όταν καταναλωθεί. Είναι η πιο γνωστή αλκοόλη, και βρίσκεται στα αλκοολούχα ποτά, σε ειδικά θερμόμετρα, ως διαλύτης και ως καύσιμο. Είναι γνωστή στην καθομιλουμένη και απλά ως «αλκοόλη»

Η ζύμωση της ζάχαρη σε αιθανόλη είναι μια από τις πρώτες γνωστές βιοχημικές αντιδράσεις που ανακάλυψε η ανθρωπότητα. Τα μεθυστικά αποτελέσματα της κατανάλωσης αιθανόλης είναι γνωστά από την αρχαιότητα (τουλάχιστον). Στη σύγχρονη εποχή, η αιθανόλη που παράγεται για βιομηχανική χρήση παράγεται επίσης και από το αιθένιο[2].

Η αιθανόλη χρησιμοποιείται ευρύτατα ως διαλύτης διαφόρων ουσιών που προορίζονται για ανθρώπινη επαφή ή κατανάλωση, που περιλαμβάνουν αρώματα, αρωματικές ουσίες, χρωστικές ουσίες και φάρμακα. Στη Χημεία χρησιμοποιείται τόσο ως διαλύτης όσο και ως πρώτη ύλη για τη σύνθεση άλλων προϊόντων. Έχει μια μακριά ιστορία ως καύσιμο παραγωγής θερμότητας, φωτός και, πιο πρόσφατα, ως καύσιμο για κινητήρες εσωτερικής καύσης.

Ονοματολογία[Επεξεργασία | επεξεργασία κώδικα]

Η ονομασία «αιθανόλη» (δείτε και την «ιστορία» παρακάτω) προέρχεται από την ονοματολογία κατά IUPAC. Συγκεκριμένα, το πρόθεμα «αιθ-» δηλώνει την παρουσία δύο (2) ατόμων άνθρακα ανά μόριο της ένωσης, το ενδιάμεσο «-αν-» δείχνει την παρουσία μόνο απλών δεσμών μεταξύ ατόμων άνθρακα στο μόριο και η κατάληξη «-όλη» φανερώνει ότι περιέχει ένα υδροξύλιο ως κύρια χαρακτηριστική ομάδα, δηλαδή ότι πρόκειται για αλκοόλη.

Η ονομασία «υδροξυαιθάνιο» προέρχεται από την «ονοματολογία υποκατάστασης», κατά την οποία η ένωση υποτίθεται ότι είναι αιθάνιο, του οποίου ένα άτομο υδρογόνου υποκαθίσταται από υδροξύλιο.

Η ονομασία «1-οξαπροπάνιο» προέρχεται από την «ονοματολογία αντικατάστασης», κατά την οποία η ένωση υποτίθεται ότι είναι προπάνιο, του οποίου το #1 άτομο άνθρακα έχει αντικατασταθεί από οξυγόνο. Η αντικατάσταση αυτή εννοεί ότι αφαιρούνται και δύο (2) άτομα υδρογόνου, σε σχέση με το προπάνιο, γιατί ο άνθρακας είναι τετρασθενής, ενώ το οξυγόνο δισθενές.

Το πρόθεμα «αιθυλ-», που χρησιμοποποιείται στην εμπειρική ονομασία «αιθυλική αλκοόλη», επινοήθηκε το 1834 από το Γερμανό χημικό Γιούστους φον Λίμπιγκ (Justus Lebig)[3]. Το «αιθυλ-» είναι ένας νεολογισμός που προήλθε από τη σύνθεση της γαλλικής λέξης ether, που έχει την έννοια της «πτητικής ουσίας», δηλαδή κάθε ουσίας που εξατμίζεται ή εξαχνώνεται γρήγορα σε θερμοκρασία δωματίου (20°C), και της ελληνικής λέξης ὓλη, με την έννοια της ύλης[4] ή και του ξύλου, γιατί το «-υλο» χρησιμοποιήθηκε αρχικά για τη μεθανόλη, που ονομάστηκε αρχικά «μεθυλική αλκοόλη», ενώ ταυτόχρονα είχε και την εμπειρική ονομασία «ξυλόπνευμα», επειδή παράγονταν με την ξηρή απόσταξη ξύλου.

Η ονομασία «αιθανόλη» επινοήθηκε ως ένα αποτέλεσμα μιας λύσης που υιοθετήθηκε στο Διεθνές Συνέδριο Χημικής Ονοματολογίας (International Conference on Chemical Nomenclature) που έγινε τον Απρίλιο του 1892 στη Γενέβη, της Ελβετίας[5].

Ο όρος «αλκοόλη», που τώρα αναφέρεται στην ευρύτερη κατηγορία των αλκοολών, αλλά στην καθομιλουμένη ακόμη αναφέρεται αποκλειστικά στην αιθανόλη, είναι τελικά ένα μεσσαιωνικό «δάνειο» από την αραβική al-kuḥl[6][7][8], που η χρήση του, με τη σημερινή έννοια της αιθανόλης, υιοθετήθηκε από τα μέσα του 18ου αιώνα. Πριν από το 18ο αιώνα, η μεσσαιωνική λατινική λέξη alcohol αναφέρονταν σε «κονιοποιημένο ορυκτό αντιμονίου, κονιοποιημένο κοσμητικό», μάλλον θειούχο αντιμόνιο (Sb2S3), αλλά αργότερα, κατα το 17ο αιώνα, σήμαινε «κάθε εξαχνωμένη ουσία ή απεσταγμένο οινόπνευμα», όπως καταγράφηκε το 1753. Η συστηματική χρήση του όρου «αλκοόλη» στη χημεία χρονολογείται από το 1850.

Μοριακή δομή[Επεξεργασία | επεξεργασία κώδικα]

Δεσμοί[9]
Δεσμός τύπος δεσμού ηλεκτρονική δομή Μήκος δεσμού Ιονισμός
C-H σ 2sp3-1s 109 pm 3% C- H+
C-C σ 2sp3-2sp3 154 pm
C-O σ 2sp3-2sp3 150 pm 19% C+ O-
O-H σ 2sp3-1s 96 pm 32% H+ O-
Κατανομή φορτίων
σε ουδέτερο μόριο
O -0,51
C#2 -0,09
H (C-H) +0,03
C#1 +0,13
H (O-H) +0,32

Ιστορία[Επεξεργασία | επεξεργασία κώδικα]

Η ζύμωση της ζάχαρης σε αιθανόλη ήταν μια από τις πιο παλιές βιοτεχνολογίες που εφάρμοσαν οι άνθρωποι. Η αιθανόλη, και τα μεθυστικά αποτελέσματα της κατανάλωσής της, ήταν γνωστή στους ανθρώπου από την Προϊστορία ως μεθυστικό συστατικό των αλκοολούχων ποτών. Αποξηραμένο υπόλειμμα 9.000 ετών σε κεραμικό δοχείο βρέθηκε στην Κίνα, γεγονός που δείχνει ότι νεολιθικοί άνθρωποι κατανάλωναν οινοπνευματώδη ποτά[10].

Παρόλο που η απόσταξη ήταν γνωστή από νωρίς στους Έλληνες και στους Άραβες, η παλαιότερη γνωστή επιστημονική ταυτοποίηση της αιθανόλης ήταν από έναν Πέρση πολυμαθή, τον Ραζή (Muhammad ibn Zakariya al-Razi), κατά τον 9ο αιώνα[11]. Η πρώτη καταγεγραμμένη παραγωγή αλκοόλης από απόσταξη οίνου έγινε από τους αλχημιστές της Σχολής του Σαλέρνο το 12ο αιώνα[12]. Η πρώτη αναφορά στην «απόλυτη αλκοόλη» (δηλαδή καθαρή (100%) αιθανόλη, |EtOH|), σε αντιδιαστολή με τα γνωστά ως τότε μίγματα αιθανόλης - νερού, έγινε από τον Ράυμοντ Λουλλ (Raymond Lull)[12].

Το 1796, ο γερμανορώσος Γιόχανν Τομπίας Λόουιτζ (Johann Tobias Lowitz) παρήγαγε καθαρή αιθανόλη φιλτράροντας αποσταγμένη αιθανόλη διαμέσου ενεργού άνθρακα. Ο Γάλλος Αντονίν Λαβουασιέ (Antoine Lavoisier) περιέγραψε την αιθανόλη ως χημική ένωση άνθρακα, υδρογόνου και οξυγόνου και το 1807 ο Νίκολας - Θέοντορ ντε Σαουσαίρ (Nicolas-Théodore de Saussure) επιβεβαίωσε το χημικό τύπο της αιθανόλης[13]. 50 χρόνια αργότερα, ο Άρτσιμπαλ Σκοττ Κούπερ (Archibald Scott Couper) δημοσίευσε το συντακτικό τύπο της αιθανόλης. Ήταν ένας από τους πρώτους συντακτικούς τύπους που επιβεβαιώθηκαν[14].

Η αιθανόλη παρασκευάστηκε για πρώτη φορά συνθετικά το 1826 με ανεξάρτητες προσπάθειες του Ολλανδού Χένρυ Χέννελ (Henry Hennel), στη Μεγάλη Βρετανία, και του Σέρουλλας (George Simon Serullas) στη Γαλλία. Το 1828, ο Μιχαέλ Φαραντάυ παρασκεύασε αιθανόλη με όξινης κατάλυσης υδρόλυση αιθενίου, διεργασία παρόμοια με τη σύγχρονη βιομηχανική σύνθεση αιθανόλης[15].

Η αιθανόλη χρησιμοποιήθηκε ως καύσιμο για λάμπες φωτισμού στις ΗΠΑ από το 1840, αλλά η καθιέρωση φορολογούμενης βιομηχανικής αιθανόλης κατά τον Εμφύλιο Πόλεμο έκανε αυτήν την πρακτική αντιοικονομική. Ο φόρος αυτός καταργήθηκε το 1906[16], με αποτέλεσμα τα κλασσικά μοντέλα Φορντ Μόντελ Τ να κινούνται με αιθανόλη ως το 1908[17]. Το 1920 όμως με την Ποτοαπαγόρευση οι παραγωγοί καυσίμων αιθανόλης κατηγορήθηκαν ότι συμμάχησαν με τους λαθρέμπορους αλκοολούχων ποτών[16] και η κατανάλωση αιθανόλης ως καυσίμων έπεσε και πάλι σε δυσμένεια μέχρι τα τέλη του 20ού αιώνα. Παραμένει ένα συνηθισμένο καύσιμο για τις «λάμπες οινοπνεύματος».

Παραγωγή[Επεξεργασία | επεξεργασία κώδικα]

Βιομηχανική[Επεξεργασία | επεξεργασία κώδικα]

Βιοχημικά[Επεξεργασία | επεξεργασία κώδικα]

1. Με αλκοολική ζύμωση γλυκόζης[18]:

\mathrm{C_6H_{12}O_6 \xrightarrow{} 2CH_3CH_2OH + 2CO_2 \uparrow}

2. Με αλκοολική ζύμωση ζάχαρης:

\mathrm{C_{12}H_{22}O_{11} + H_2O \xrightarrow{} 4CH_3CH_2OH + 4CO_2 \uparrow}

Από αιθένιο[Επεξεργασία | επεξεργασία κώδικα]

Από το αιθένιο (παράγωγο του πετρελαίου και του φυσικού αερίου) παρουσία οξέος, συνήθως θειικού οξέος, φωσφορικού οξέος ή οξειδίου του αργιλίου, που είναι «οξύ κατά Lewis»[19]:

\mathrm{CH_2=CH_2 + H_2O \xrightarrow{H^+} CH_3CH_2OH}

Εργαστηριακή[Επεξεργασία | επεξεργασία κώδικα]

  • Οι παρακάτω μέθοδοι πρακτικά δεν εφαρμόζονται, παρά μόνο για την ακαδημαϊκή μελέτη τους:

Από αιθυλαλογονίδια[Επεξεργασία | επεξεργασία κώδικα]

1. Με υδρόλυση αιθυλαγολογονιδίων (CH3CH2X) παράγεται αιθανόλη[20]:

\mathrm{CH_3CH_2X + AgOH \xrightarrow{} CH_3CH_2OH + AgX \downarrow}


\mathrm{Ag_2O + H_2O \overrightarrow\longleftarrow 2AgOH}

2. Με επίδραση καρβοξυλικών αλάτων (RCOONa) παράγονται αρχικά καρβοξυλικοί αιθυλεστέρες (RCOOCH2CH3), που υδρολόνται προς αιθανόλη[21]:

\mathrm{CH_3CH_2X + RCOONa \xrightarrow{-NaX} RCOOCH_2CH_3 \xrightarrow{+NaOH} RCOONa + CH_3CH_2OH}

Από αιθυλεστέρες[Επεξεργασία | επεξεργασία κώδικα]

Με υδρόλυση αιθυλεστέρων (RCOOCH2CH3) παράγεται αιθανόλη[22]:


\mathrm{RCOOCH_2CH_3 + NaOH \xrightarrow{} CH_3CH_2OH + RCOONa}

Από αιθανάλη[Επεξεργασία | επεξεργασία κώδικα]

Με αναγωγή αιθανάλης (CH3CHO):
1. Με καταλυτική υδρογόνωση[23]:


\mathrm{CH_3CHO + H_2 \xrightarrow{Ni} CH_3CH_2OH}

2. Με λιθιοαργιλιοϋδρίδιο (LiAlH4)[24]:


\mathrm{4CH_3CHO + LiAlH_4 \xrightarrow{} Li[Al(OCH_2CH_3)_4] \xrightarrow{+2H_2O} 4CH_3CH_2OH + LiAlO_2}

Από αιθανικό οξύ[Επεξεργασία | επεξεργασία κώδικα]

Με αναγωγή αιθανικού οξέος με LiAlH4[24]:


\mathrm{2CH_3COOH + LiAlH_4 \xrightarrow{} 2CH_3CH_2OH + LiAlO_2}

Από αιθανικό αιθυλεστέρα[Επεξεργασία | επεξεργασία κώδικα]

O αιθανικός αιθυλεστέρας δίνει αντιδράσεις οξειδοαναγωγής, σχηματίζοντας αιθανόλη[25]:

1. Με νάτριο (Na) και αιθανόλη (CH3CH2OH):

\mathrm{CH_3COOCH_2CH_3 + 3Na + 3CH_3CH_2OH \xrightarrow{} 4CH_3CH_2OH + 3CH_3CH_2ONa}

2. Με διυδρογόνο (H2) και νικέλιο (Ni):

\mathrm{CH_3COOCH_2CH_3 + \frac{3}{2}H_2 \xrightarrow{Ni} 2CH_3CH_2OH}

3. Με λιθιοαργιλιοτετραϋδρίδιο (LiAlH4):

\mathrm{2CH_3COOCH_2CH_3 + LiAlH_4 \xrightarrow{} LiAl(OCH_2CH_3)_4 \xrightarrow{+2H_2O} 4CH_3CH_2OH + LiAlO_2}

Από αιθαναμίνη[Επεξεργασία | επεξεργασία κώδικα]

Με επίδραση νιτρώδους οξέος (ΗΝΟ2) σε αιθαναμίνη [26]:


\mathrm{CH_3CH_2NH_2 + HNO_2 \xrightarrow{} CH_3CH_2OH + N_2 \uparrow + H_2O}

Από μεθανόλη[Επεξεργασία | επεξεργασία κώδικα]

Υπάρχουν δύο (2) μέθοδοι για ανοικοδόμηση μεθανόλης προς αιθανόλη[27]:
Αρχίζουν και οι δύο με την παραγωγή ιωδομεθάνιου και μετά αιθανονιτρίλιου:


\mathrm{CH_3OH + HI \xrightarrow{} CH_3I + H_2O}

\mathrm{CH_3I + NaCN \xrightarrow{} CH_3CN + NaI}

1. Υδρόλυση αιθανονιτριλίου προς αιθανικό οξύ και μετά αναγωγή προς αιθανόλη:

\mathrm{CH_3CN + 2H_2O \xrightarrow{} CH_3COOH + NH_3}
\mathrm{2CH_3COOH + LiAlH_4 \xrightarrow{} 2CH_3CH_2OH + LiAlO_2}

2. Αναγωγή προς αιθαναμίνη και μετατροπή της τελευταίας σε αιθανόλη:

\mathrm{CH_3CN + 2H_2 \xrightarrow{} CH_3CH_2NH_2}
\mathrm{CH_3CH_2NH_2 + HNO_2 \xrightarrow{} CH_3CH_2OH + N_2 \uparrow + H_2O}

Από 1-προπανόλη[Επεξεργασία | επεξεργασία κώδικα]

Με αποικοδόμιση της ανθρακικής αλυσίδας της 1-προπανόλης[27]::


\mathrm{
3CH_3CH_2CH_2OH + 4KMnO_4 + 2H_2SO_4 \xrightarrow{} 3CH_3CH_2COOH + 4MnO_2 + 2K_2SO_4 + 5H_2O}
\mathrm{2CH_3CH_2COOH + SOCl_2 \xrightarrow{} 2CH_3CH_2COCl + H_2SO_4}
\mathrm{CH_3CH_2COCl + 2NH_3 \xrightarrow{} CH_3CH_2CONH_2 + NH_4Cl}

\mathrm{CH_3CH_2CONH_2 + 2NaBrO \xrightarrow{} CH_3CH_2NH_2 + Na_2CO_3 + Br_2}

\mathrm{CH_3CH_2NH_2 + HNO_2 \xrightarrow{} CH_3CH_2OH + N_2 \uparrow + H_2O}

Από διμεθυλαιθέρα[Επεξεργασία | επεξεργασία κώδικα]

Με επίδραση αλκυλολιθίου (π.χ. μεθυλολιθίου) σε διμεθυλαιθέρα έχουμε τη μετάθεση Wittig, με την οποία παράγεται αιθανόλη και αλκάνιο (μεθάνιο αν είχε χρησιμοποιηθεί μεθυλολίθιο)[28]:

\mathrm{CH_3OCH_3 + CH_3Li \xrightarrow{-CH_4} CH_3CH_2OLi \xrightarrow{+H_2O} CH_3CH_2OH + LiOH}

Φυσικές ιδιότητες[Επεξεργασία | επεξεργασία κώδικα]

Είναι υγρό άχρωμο και ευδιάλυτο στο νερό. Έχει ευχάριστη γεύση και σχετικά ευχάριστη, αν και δριμεία, οσμή. Η αιθανόλη αναμιγνύεται με το νερό σε κάθε αναλογία και κατά την ανάμειξη παρατηρείται ελάττωση όγκου, ενώ εκλύεται θερμότητα. Το μίγμα 95% αλκοόλης και 5% νερού χαρακτηρίζεται ως αζεοτροπικό, επειδή κατά την απόσταξη δεν διαχωρίζονται τα συστατικά του, καθώς ζέουν στην ίδια θερμοκρασία.

Φυσιολογικές ιδιότητες[Επεξεργασία | επεξεργασία κώδικα]

Κύριο λήμμα: Αλκοολούχο ποτό

Όταν η αιθυλική αλκοόλη καταποθεί σε μικρές ποσότητες, προκαλεί αίσθημα ευφορίας. Σε μεγαλύτερες ποσότητες διαταράσσει την ομαλή λειτουργία του εγκεφάλου, προκαλώντας την κατάσταση που χαρακτηρίζεται ως μέθη (κοινώς μεθύσι). Σε ακόμη μεγαλύτερες ποσότητες προκαλεί απώλεια αισθήσεων και, σε σπάνιες περιπτώσεις, θάνατο. Θανατηφόρος είναι, επίσης, και η ενδοφλέβια χορήγησή της.

Χημικές ιδιότητες και παράγωγα[Επεξεργασία | επεξεργασία κώδικα]

Αλκοολικά άλατα[Επεξεργασία | επεξεργασία κώδικα]

1. Αντίδραση με αλκαλιμέταλλα[29]:


\mathrm{CH_3CH_2OH + Na \xrightarrow{} CH_3CH_2ONa + \frac{1}{2}H_2 \uparrow}

2. Αντίδραση με αμίδια μετάλλων[30]::


\mathrm{CH_3CH_2OH + NaNH_2 \xrightarrow{} CH_3CH_2ONa + NH_3 \uparrow}

3. Αντίδραση με αιθινικά μέταλλα[31]::


\mathrm{CH_3CH_2OH + HC  \equiv CNa \xrightarrow{} CH_3CH_2ONa + HC  \equiv CH \uparrow}

4. Αντίδραση με αντιδραστήρια Grignard[32]::


\mathrm{CH_3CH_2OH + RMgX \xrightarrow{} CH_3CH_2OMgX + RH}

Υποκατάσταση από αλογόνα[Επεξεργασία | επεξεργασία κώδικα]

1. Αντίδραση με υδροϊώδιο[33]:


\mathrm{CH_3CH_2OH + HI \xrightarrow{} CH_3CH_2I + H_2O}

2. Αντίδραση με άλλα αλογόνα (X: F, Cl, Br)[34]:


\mathrm{CH_3CH_2OH + HX \xrightarrow{ZnX_2} CH_3CH_2X + H_2O}

3. Αντίδραση με ισχυρά χλωριωτικά μέσα[35]:

1. Με PCl5:


\mathrm{CH_3CH_2OH + PCl_5 \xrightarrow{} CH_3CH_2Cl + POCl_3 + HCl}

2. Με PCl3[36]:


\mathrm{3CH_3CH_2OH + PCl_3 \xrightarrow{} 3CH_3CH_2Cl + H_3PO_3}

3. Με SOCl2[37]:


\mathrm{CH_3CH_2OH + SOCl_2 \xrightarrow{} CH_3CH_2Cl + SO_2 + HCl}

Αιθένιο[Επεξεργασία | επεξεργασία κώδικα]

Με ενδομοριακή αφυδάτωση αιθανόλης παράγεται αιθένιο. Η αντίδραση ευνοείται σε σχετικά υψηλές θερμοκρασίες, >150 °C. Σε χαμηλότερες ευνοείται η διαμοριακή αφυδάτωση που δίνει διαιθυλαιθέρα, ενώ χωρίς καθόλου θέρμανση παράγεται o όξινος θειικός αιθυλεστέρας (CH3CH2OSO3H), που αποτελεί την ενδιάμεση ένωση για τις αφυδατώσεις.[38]:

\mathrm{ CH_3CH_2OH \xrightarrow[>150^oC]{\pi .H_2SO_4} CH_2=CH_2 + H_2O }

  • Πριν την καθιέρωση του πετρελαίου ως βασικής στρατηγικής πρώτης ύλης, χρησιμοποιήθηκε και για βιομηχανική παραγωγή αιθενίου.

Διαιθυλαιθέρας[Επεξεργασία | επεξεργασία κώδικα]

Παραγωγή διαιθυλαιθέρα[39]:


\mathrm{2CH_3CH_2OH \xrightarrow[<140^oC]{H_2SO_4} CH_3CH_2OCH_2CH_3 + H_2O}

Καρβοξυλικοί εστέρες[Επεξεργασία | επεξεργασία κώδικα]

Αντίδραση με ακυλιωτικά μέσα:
1. Εστεροποίηση με καρβοξυλικό οξύ[40]:


\mathrm{CH_3CH_2OH + RCOOH \overrightarrow\longleftarrow RCOOCH_2CH_3 + H_2O}

2. Εστεροποίηση με ανυδρίτη καρβοξυλικού οξέος[41]:


\mathrm{CH_3CH_2OH + RCOOOCR \xrightarrow{} RCOOCH_2CH_3 + RCOOH}

3. Εστεροποίηση με ακυλαλογονίδιο[42]:


\mathrm{CH_3CH_2OH + RCOX \xrightarrow{Py} RCOOCH_2CH_3 + HX}

Οξείδωση[Επεξεργασία | επεξεργασία κώδικα]

1. Με υπερμαγγανικό κάλιο (KMnO4). Παράγεται αιθανικό οξύ[43]:


\mathrm{5CH_3CH_2OH + 4KMnO_4 + 2H_2SO_4 \xrightarrow{} 3CH_3COOH + 2K_2SO_4 + 4MnO + 7H_2O}

2. Με τριοξείδιο του χρωμίου (CrO3). Παράγεται αρχικά αιθανάλη και στη συνέχεια, με περίσσεια τριοξειδίου του χρωμίου, αιθανικό οξύ[44]:


\mathrm{3CH_3CH_2OH + 2CrO_3 \xrightarrow{-Cr_2O_3, \; -3H_2O} 3CH_3CHO \xrightarrow{+ 2CrO_3} 3CH_3COOH + Cr_2O_3}

Αποικοδόμηση προς μεθανόλη[Επεξεργασία | επεξεργασία κώδικα]

Με αποικοδόμηση της ανθρακικής αλυσίδας της αιθανόλης παράγεται μεθανόλη[27]::


\mathrm{
3CH_3CH_2OH + 4KMnO_4 + 2H_2SO_4 \xrightarrow{} 3CH_3COOH + 4MnO_2 + 2K_2SO_4 + 5H_2O}
\mathrm{2CH_3COOH + SOCl_2 \xrightarrow{} 2CH_3COCl + H_2SO_4}
\mathrm{CH_3COCl + 2NH_3 \xrightarrow{} CH_3CONH_2 + NH_4Cl}

\mathrm{CH_3CONH_2 + 2NaBrO \xrightarrow{} CH_3NH_2 + Na_2CO_3 + Br_2}

\mathrm{CH_3NH_2 + HNO_2 \xrightarrow{} CH_3OH + N_2 \uparrow + H_2O}

Ανοικοδόμηση προς 1-προπανόλη[Επεξεργασία | επεξεργασία κώδικα]

Υπάρχουν δύο (2) μέθοδοι για ανοικοδόμηση αιθανόλης προς 1-προπανόλη[27]:
Αρχίζουν και οι δύο με την παραγωγή αιθυλοϊωδίδιου και μετά προπανονιτρίλιου:


\mathrm{CH_3CH_2OH + HI \xrightarrow{} CH_3CH_2I + H_2O}

\mathrm{CH_3CH_2I + NaCN \xrightarrow{} CH_3CH_2CN + NaI}

1. Υδρόλυση προπανονιτριλίου προς προπανικό οξύ και μετά αναγωγή προς 1-προπανόλη:

\mathrm{CH_3CH_2CN + 2H_2O \xrightarrow{} CH_3CH_2COOH + NH_3}
\mathrm{2CH_3CH_2COOH + LiAlH_4 \xrightarrow{} 2CH_3CH_2CH_2OH + LiAlO_2}

2. Αναγωγή προς 1-προπαναμίνη και μετατροπή της τελευταίας σε 1-προπανόλη:

\mathrm{CH_3CH_2CN + 2H_2 \xrightarrow{} CH_3CH_2CH_2NH_2}
\mathrm{CH_3CH_2CH_2NH_2 + HNO_2 \xrightarrow{} CH_3CH_2CH_2OH + N_2 \uparrow}

Ανοικοδόμηση προς 1-βουτανόλη[Επεξεργασία | επεξεργασία κώδικα]

Αρχίζει με την παραγωγή αιθυλοϊωδίδιου και μετά, με επίδραση οξιρανίου σε αιθυλομαγνησιοϊωδίδιο, παράγεται 1-βουτανόλη[27]:


\mathrm{CH_3CH_2OH + HI \xrightarrow{} CH_3CH_2I + H_2O}

\mathrm{CH_3CH_2I + Mg \xrightarrow{|Et_2O|} CH_3CH_2MgI}
Οξιράνιο \mathrm{+ CH_3CH_2MgI \xrightarrow{|Et_2O|} CH_3CH_2CH_2CH_2OMgI}

\mathrm{CH_3CH_2CH_2CH_2OMgI + H_2O \xrightarrow{} CH_3CH_2CH_2CH_2OH + Mg(OH)I \downarrow}

Προσθήκη σε εποξυαιθάνιο[Επεξεργασία | επεξεργασία κώδικα]

Με επίδραση σε εποξυαιθάνιο παράγεται 2-αιθοξυαιθανόλη[45]:

Οξιράνιο \mathrm{+ CH_3CH_2OH \xrightarrow{} CH_3CH_2OCH_2CH_2OH}

Επίδραση καρβενίων[Επεξεργασία | επεξεργασία κώδικα]

Παρεμβολή καρβενίων, π.χ. με μεθυλενίου παράγονται 1-προπανόλη, 2-προπανόλη και αιθυλομεθυλαιθέρας[46]:


\mathrm{CH_3CH_2OH + CH_3Cl + KOH \xrightarrow{} \frac{1}{2} CH_3CH_2CH_2OH + \frac{1}{3} CH_3CH(OH)CH_3 + \frac{1}{6} CH_3CH_2OCH_3 + KCl + H_2O}

Χρήσεις[Επεξεργασία | επεξεργασία κώδικα]

Χρησιμοποιείται ως διαλύτης σε πολλές εφαρμογές τόσο της καθημερινής ζωής (π.χ. σε μαρκαδόρους οινοπνεύματος, κόλλες κτλ.) όσο και της βιομηχανίας. Ευρύτατη είναι η χρήση της για την παρασκευή οινοπνευματωδών ποτών, και γι' αυτό το λόγο επιβάλλεται μεγάλη φορολογία. Χρησιμοποιείται, επίσης, ευρύτατα στην ιατρική ως απολυμαντικό. Για οικιακή χρήση και για την αποφυγή καταβολής υψηλής φορολογίας, υφίσταται μετουσίωση, δηλαδή αναμιγνύεται με μικρή ποσότητα πετρελαίου, το οποίο την καθιστά ακατάλληλη προς πόση και από το οποίο είναι αδύνατο να διαχωριστεί με φθηνές μεθόδους. Για να ξεχωρίζει από την μη μετουσιωμένη αιθυλική αλκοόλη, προστίθεται, επίσης, και η χρωστική κυανούν του μεθυλενίου, το οποίο της προσδίδει κυανοπράσινο χρώμα.

Σημαντική χρήση βρίσκει, επίσης, ως καύσιμο σε κινητήρες εσωτερικής καύσεως, αντικαθιστώντας την βενζίνη. Δίδει καυσαέρια πολύ λιγότερο ρυπογόνα, ωστόσο έχει το μειονέκτημα της δυσχερούς ανάφλεξής της, όταν ο κινητήρας είναι κρύος. Σήμερα, η πλειοψηφία των οχημάτων στην Βραζιλία χρησιμοποιεί αιθυλική αλκοόλη ως καύσιμο.

Aναφορές και σημειώσεις[Επεξεργασία | επεξεργασία κώδικα]

  1. Για εναλλακτικές ονομασίες δείτε τον πίνακα πληροφοριών.
  2. Myers, Richard L.; Myers, Rusty L.|title=The 100 most important chemical compounds: a reference guide|year=2007|publisher=Greenwood Press|location=Westport, Conn.|isbn=0313337586|page=122|url=http://books.google.com/?id=0AnJU-hralEC&pg=PA122
  3. Liebig, Justus (1834) "Ueber die Constitution des Aethers und seiner Verbindungen" (On the constitution of ether and its compounds), Annalen der Pharmacie, 9 : 1–39. From page 18: "Bezeichnen wir die Kohlenwasserstoffverbindung 4C + 10H als das Radikal des Aethers mit E2 und nennen es Ethyl, …" (Let us designate the hydrocarbon compound 4C + 10H as the radical of ether with E2 and name it ethyl …).
  4. Harper, Douglas. "ethyl". Online Etymology Dictionary.
  5. For a report on the 1892 International Conference on Chemical Nomenclature, see: Armstrong, Henry (1892). "The International Conference on Chemical Nomenclature". Nature 46 (1177): 56–59. doi:10.1038/046056c0. Armstrong's report is reprinted with the resolutions in English in: Armstrong, Henry (1892). "The International Conference on Chemical Nomenclature". The Journal of Analytical and Applied Chemistry 6: 390–400 (398). "The alcohols and the phenols will be called after the name of the hydrocarbon from which they are derived, terminated with the suffix ol (ex. pentanol, pentenol, etc.)."
  6. OED; etymonline.com
  7. The American Heritage Dictionary of the English Language, Fourth Edition, Houghton Mifflin Harcourt, 2009.
  8. Υπάρχουν όμως και αμφισβητήσεις για την παραπάνω ετυμολογική προέλευση της λέξης «αλκοόλη», όπως αυτή: "The word "alcohol" almost certainly comes from the Arabic language (the "al-" prefix being the Arabic definite article); however, the precise origin is unclear. It was introduced into Europe, together with the art of distillation and the substance itself, around the 12th century by various European authors who translated and popularized the discoveries of Islamic alchemists. A popular theory, found in many dictionaries, is that it comes from الكحل = ALKHL = al-kuhul, originally the name of very finely powdered antimony sulfide Sb2S3 used as an antiseptic and eyeliner. The powder is prepared by sublimation of the natural mineral stibnite in a closed vessel. According to this theory, the meaning of alkuhul would have been first extended to distilled substances in general, and then narrowed to ethanol. This conjectured etymology has been circulating in England since 1672 at least (OED). However, this derivation is suspicious since the current Arabic name for alcohol, الكحول = ALKHWL = al???, does not derive from al-kuhul. The Quran in verse 37:47 uses the word الغول = ALGhWL = al-ghawl — properly meaning "spirit" ("spiritual being") or "demon" — with the sense "the thing that gives the wine its headiness". The word al-ghawl also originated the English word "ghoul", and the name of the star Algol. This derivation would, of course, be consistent with the use of "spirit" or "spirit of wine" as synonymous of "alcohol" in most Western languages. (Incidentally, the etymology "alcohol" = "the devil" was used in the 1930s by the U.S. Temperance Movement for propaganda purposes.) According to the second theory, the popular etymology and the spelling "alcohol" would not be due to generalization of the meaning of ALKHL, but rather to Western alchemists and authors confusing the two words ALKHL and ALGhWL, which have indeed been transliterated in many different and overlapping ways. The fact that stibnite is also mentioned in the Hebrew Bible under the name כהל = kohel = "" can only have contributed to the confusion....", VIAS ENCYCLOPEDIA.
  9. Τα δεδομένα προέρχονται εν μέρει από το «Table of periodic properties of the Ellements», Sagrent-Welch Scientidic Company και Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, Σελ. 34.
  10. Roach, J. (July 18, 2005). "9,000-Year-Old Beer Re-Created From Chinese Recipe". National Geographic News. Retrieved 2007-09-03.
  11. Ligon, B.Lee (2001). "Rhazes: His career and his writings". Seminars in Pediatric Infectious Diseases 12 (3): 266–272. doi:10.1053/spid.2001.26123.
  12. 12,0 12,1 Forbes, Robert James(1948) A short history of the art of distillation, p.89
  13. Lowitz, T. (1796) "Anzeige eines, zur volkommen Entwasserung des Weingeistes nothwendig zu beobachtenden, Handgriffs" (Report of a task that must be done for the complete dehydration of wine spirits [i.e., alcohol-water azeotrope]), (Crell's) Chemische Annalen …, vol. 1, pp. 195–204. See pp. 197–198: Lowitz dehydrated the azeotrope by mixing it with a 2:1 excess of anhydrous alkali and then distilling the mixture over low heat.
  14. Couper AS (1858). "On a new chemical theory" (online reprint). Philosophical magazine 16 (104–16). http://web.lemoyne.edu/~giunta/couper/couper.html. Ανακτήθηκε στις 2007-09-03. 
  15. Hennell, H. (1828). "On the mutual action of sulfuric acid and alcohol, and on the nature of the process by which ether is formed". Philosophical Transactions 118: 365. doi:10.1098/rstl.1828.0021. 
  16. 16,0 16,1 Siegel, Robert (2007-02-15). «Ethanol, Once Bypassed, Now Surging Ahead». NPR. http://www.npr.org/templates/story/story.php?storyId=7426827. Ανακτήθηκε στις 2007-09-22. 
  17. DiPardo, Joseph. «Outlook for Biomass Ethanol Production and Demand» (PDF). United States Department of Energy. http://tonto.eia.doe.gov/FTPROOT/features/biomass.pdf. Ανακτήθηκε στις 2007-09-22. 
  18. Morais PB, Rosa CA, Linardi VR, Carazza F, Nonato EA (1996). "Production of fuel alcohol by Saccharomyces strains from tropical habitats". Biotechnology Letters 18 (11): 1351. doi:10.1007/BF00129969. 
  19. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 156, §6.8.3.
  20. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.197, §8.2.3α.
  21. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.197, §8.2.3β.
  22. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.198, §8.2.5.
  23. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 218, §9.2.2.
  24. 24,0 24,1 Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 197, §8.2.2α.
  25. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 307, §13.7.5.
  26. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.198, §8.2.6.
  27. 27,0 27,1 27,2 27,3 27,4 Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.198, §8.2.7.
  28. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.201, §8.5.4.
  29. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.2.4α.
  30. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.2.4β.
  31. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.2.4γ.
  32. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.2.4δ.
  33. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.4.2β.
  34. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.4.2γ.
  35. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.4.3α.
  36. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.4.3β.
  37. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.4.3γ.
  38. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.153, §6.3.3.
  39. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.4.5β.
  40. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.4.4α.
  41. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.4.4β.
  42. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.4.4γ.
  43. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.200, §8.4.6α.
  44. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.200, §8.4.6β.
  45. Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985, §2.1., σελ. 16-17, εφαρμογή γενικής αντίδρασης για Nu = CH3CH2O-.
  46. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 155, §6.7.3, R = CH2OH.

Πηγές[Επεξεργασία | επεξεργασία κώδικα]

  • Γ. Βάρβογλη, Ν. Αλεξάνδρου, Οργανική Χημεία, Αθήνα 1972
  • Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991
  • SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999
  • Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982
  • Δημήτριου Ν. Νικολαΐδη: Ειδικά μαθήματα Οργανικής Χημείας, Θεσσαλονίκη 1983.
  • Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985
Στο λήμμα αυτό έχει ενσωματωθεί κείμενο από το λήμμα Ethanol της Αγγλικής Βικιπαίδειας, η οποία διανέμεται υπό την GNU FDL και την CC-BY-SA 3.0. (ιστορικό/συντάκτες).
Στο λήμμα αυτό έχει ενσωματωθεί κείμενο από το λήμμα Methanol της Αγγλικής Βικιπαίδειας, η οποία διανέμεται υπό την GNU FDL και την CC-BY-SA 3.0. (ιστορικό/συντάκτες).
Στο λήμμα αυτό έχει ενσωματωθεί κείμενο από το λήμμα Ethanol της Γερμανικής Βικιπαίδειας, η οποία διανέμεται υπό την GNU FDL και την CC-BY-SA 3.0. (ιστορικό/συντάκτες).