Ημικανονικό πολύεδρο

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Μετάβαση σε: πλοήγηση, αναζήτηση
Ημικανονικά πολύεδρα:
στερεά του Αρχιμήδη, πρίσματα, αντιπρίσματα
Κόλουρο τετράεδρο Κυβοκτάεδρο Κόλουρος κύβος Κόλουρο οκτάεδρο Ρομβοκυβοκτάεδρο
Κόλουρο κυβοκτάεδρο Πεπλατυσμένος κύβος Εικοσιδωδεκάεδρο Κόλουρο δωδεκάεδρο Κόλουρο εικοσάεδρο
Ρομβοεικοσιδωδεκάεδρο Κόλουρο εικοσιδωδεκάεδρο Πεπλατυσμένο δωδεκάεδρο Τριγωνικό πρίσμα Τετραγωνικό αντιπρίσμα

Ημικανονικό πολύεδρο λέγεται ένα πολύεδρο, που όλες οι έδρες του είναι κανονικά πολύγωνα διαφόρων τύπων, τα οποία ενώνονται με τον ίδιο τρόπο γύρω από κάθε κορυφή. Ένα ημικανονικό πολύεδρο αναγνωρίζεται από τη διαμόρφωση κορυφής, δηλαδή από τον τρόπο με τον οποίο οι πολυγωνικές έδρες ενώνονται για να σχηματίσουν την πολυεδρική γωνία της κάθε κορυφής του. Για παράδειγμα, η διαμόρφωση κορυφής (3.3.3.3.4) αντιστοιχεί στον πεπλατυσμένο κύβο, ενώ η (3.3.3.4) αντιστοιχεί στο τετραγωνικό αντιπρίσμα.

Η συνήθης χρήση του όρου αφορά τα στερεά του Αρχιμήδη. Στην κατηγορία συμπεριλαμβάνονται επίσης τα πρίσματα και τα αντιπρίσματα που οι έδρες τους είναι κανονικά πολύγωνα.

Συγκεκριμένα, στα ημικανονικά πολύεδρα ανήκουν:

  • Τα 13 στερεά του Αρχιμήδη.
  • Η άπειρη σειρά πρισμάτων, με βάσεις κανονικά πολύγωνα και παράπλευρη επιφάνεια αποτελούμενη από τετράγωνα.
  • Η άπειρη σειρά αντιπρισμάτων, με βάσεις κανονικά πολύγωνα και παράπλευρη επιφάνεια αποτελούμενη από ισόπλευρα τρίγωνα.

Στα αγγλικά ο αντίστοιχος όρος είναι semiregular polyhedron, που όμως είναι υπό συζήτησιν ως προς τον ακριβή ορισμό του και ποιες ομάδες πολυέδρων περιλαμβάνει.

Πηγές - Παραπομπές[Επεξεργασία | επεξεργασία κώδικα]