Μαθηματική ανάλυση

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Μετάβαση σε: πλοήγηση, αναζήτηση

Η μαθηματική ανάλυση είναι ένα από τα βασικά πεδία των μαθηματικών, το οποίο ασχολείται με την έννοια της απόστασης. Θεμελιωτές της ήταν ο Γκότφριντ Βίλχελμ Λάιμπνιτς και ο Ισαάκ Νεύτων, οι οποίοι την ανακάλυψαν ανεξάρτητα στα τέλη του 17ου αιώνα.

Κλάδοι της μαθηματικής ανάλυσης είναι ο διαφορικός και ολοκληρωτικός λογισμός (οι οποίοι συλλήβδην καλούνται και "απειροστικός λογισμός"), η τοπολογία, η συναρτησιακή ανάλυση, η θεωρία μέτρου. Πρόκειται επίσης για το κατεξοχήν εργαλείο της (μαθηματικής) φυσικής, η οποία, άλλωστε, αρχικά αποτελούσε τον μόνο λόγο ύπαρξής της, και αποτελεί ακόμη έναν από τους σημαντικότερους. Μέθοδοι της μαθηματικής ανάλυσης, κυρίως μέσα από την εφαρμοσμένη μηχανική, βρίσκουν επίσης μεγάλη εφαρμογή στην τεχνολογία.

Σημαντικές έννοιες της μαθηματικής ανάλυσης είναι οι πραγματικοί αριθμοί, η συνάρτηση, το όριο και η σύγκλιση, η διαφορισιμότητα ή παραγωγισιμότητα και η ολοκληρωσιμότητα, η μετρική κ.ά.

Το κύριο αντικείμενο μελέτης της ανάλυσης είναι η μελέτη των συναρτήσεων. Οι βασικές έννοιες της ανάλυσης είναι το όριο,η παράγωγος και το ολοκλήρωμα. Η παράγωγος και το ολοκλήρωμα αποτελούν τiς δύο διαφορετικές όψεις του ίδιου νομίσματος. Η ολοκλήρωση και η παραγώγιση είναι μεταξύ τους αντίστροφες διαδικασίες.

Ιστορικό[Επεξεργασία | επεξεργασία κώδικα]

Η μαθηματική ανάλυση αναπτύχθηκε επίσημα τον 17ο αιώνα κατά την διάρκεια της Επιστημονικής Επανάστασης, αλλά πολλές απ΄ τις ιδέες της μπορούν να αναχθούν σε προηγούμενους μαθηματικούς. Νωρίτερα αποτελέσματα στην ανάλυση σιωπηρά παρουσιάστηκαν κατά τις πρώτες ημέρες των αρχαίων ελληνικών μαθηματικών. Για παράδειγμα ένα άπειρο γεωμετρικό άθροισμα είναι εμμέσως παράδοξο της διχοτόμησης του Ζήνωνα. Αργότερα, 'Ελληνες μαθηματικοί όπως ο Έυδοξος και ο Αρχιμήδης έκαναν να καταστεί πιο σαφής, αλλά ανεπίσημη, η χρήση των εννοιών των ορίων και της σύγκλισης, όταν χρησιμοποιείται η μέθοδος της εξάντλησης για να υπολογίσουμε το εμβαδόν και τον όγκο των περιφερειών και των στερεών.

Τον 18ο αιώνα ο Όιλερ εισήγαγε την έννοια της Μαθηματικής Συνάρτησης. Η Πραγματική Ανάλυση άρχισε να αναδεικνύεται σαν ανεξάρτητος κλάδος, όταν ο Μπέρναρντ Μπολτσάνο εισήγαγε τον σύγχρονο ορισμό της συνεχείας το 1816, ωστόσο το έργο του Μπολτσάνο δεν διαδόθηκε ευρέως μέχρι τη δεκαετία του 1870. Το 1821, ο Κωσύ άρχισε να θέτει το λογισμό σε σταθερά λογικά θεμέλια με την απόρριψη της αρχής της γενικότητας της  άλγεβρας, η οποία χρησιμοποιούνταν ευρέως σε προηγούμενα έργα, ιδιαίτερα από τον Όιλερ. Αντ΄ αυτού, ο Κωσύ διατύπωσε το λογισμό στα πλαίσια γεωμετρικών ιδεών και απειροστών. Έτσι, ο ορισμός του για την συνέχεια, απαιτούσε μια απειροστική μεταβολή στον x, ώστε να αντιστοιχεί με μια απειροστική μεταβολή στον y. Επίσης, εισήγαγε την έννοια των Ακολουθιών του Cauchy και ξεκίνησε την επίσημη θεωρία της Μιγαδικής Ανάλυσης. Ο Πουασόν, ο Λιουβίλ, ο Φουριέ και άλλοι μελέτησαν τις μερικές διαφορικές εξισώσεις και την Αρμονική Ανάλυση. Η συνεισφορά αυτών των μαθηματικών και άλλων, όπως του Βάιερστρας ,οδήγησε στην προσέγγιση του (ε,δ) ορισμού του ορίου ,ιδρύοντας με αυτό τον τρόπο τον σύγχρονο κλάδο της μαθηματικής ανάλυσης.

Σημαντικές Έννοιες[Επεξεργασία | επεξεργασία κώδικα]


Μετρικοί Χώροι[Επεξεργασία | επεξεργασία κώδικα]

Στα μαθηματικά, μετρικός χώρος είναι ένα σύνολο όπου η έννοια της απόστασης (αυτό που λέμε "μετρική") μεταξυ δύο στοιχείων αυτού του χώρου είναι καθορισμένη

Τα πιο συχνά παραδείγματα μετρικών χώρων είναι η Πραγματική Ευθεία, το Μιγαδικό Επίπεδο, ο Ευκλείδιος Χώρος και οι Διανυσματικοί Χώροι. Υπάρχουν όμως και παραδείγματα χώρων χωρίς μετρικές κυρίως στα πεδία της Θεωρίας Μέτρου και της Συναρτησιακής Ανάλυσης.

Τυπικά ένας Μετρικός Χώρος ορίζεται ως το ζευγάρι (M,d) όπου M είναι ένα σύνολο και d μια μετρική πάνω στο M.

Μετρική λέγεται μια συνάρτηση :d \colon M \times M \rightarrow \mathbb{R} έτσι ώστε για κάποια x, y, z \in M ,ισχύουν οι παρακάτω ιδιότητες:

  1. d(x,y) = 0\, αν και μόνο αν x = y\,     (ταυτοτική ιδιότητα)
  2. d(x,y) = d(y,x)\,     (συμμετρία) και,
  3. d(x,z) \le d(x,y) + d(y,z)     (τριγωνική ανισότητα) .

Παίρνοντας την τρίτη ιδιότητα και θέτοντας z=x, αποδεικνύεται ότι d(x,y) \ge 0.

Ακολουθίες και όρια[Επεξεργασία | επεξεργασία κώδικα]

Ακολουθία είναι μια λίστα στοιχείων με καθορισμένη σειρά.Η βασική διαφορά με τα σύνολα είναι ότι στην ακολουθία, η σειρά παίζει σημαντικό ρόλο και επίσης κάποιο ή κάποια στοιχεία μπορεί να εμφανίζονται περισσότερες από μια φορές σε πολλές θέσεις. Μια ακολουθία μπορεί να οριστεί και ως συνάρτηση με πεδίο ορισμού ένα μετρίσιμο και πλήρως διατεταγμένο σύνολο όπως οι φυσικοί αριθμοί.

Μια από τις σημαντικότερες ιδιότητες των ακολουθιών είναι η σύγκλιση. Με απλά λόγια, μια ακολουθία συγκλίνει αν έχει όριο (στο άπειρο). Με βάση τη θεωρία, θα λέμε ότι μια ακολουθία έχει όριο το x αν το προσεγγίζει καθώς το n γίνεται πολύ μεγάλο (όπου το n καθορίζει την θέση κάθε στοιχείου). Δηλαδή όσο το n τείνει στο άπειρο, η απόσταση των

τιμών τις ακολουθίας και του x τείνει στο 0.

\lim_{n\to\infty} a_n = x.

Βασικοί Κλάδοι[Επεξεργασία | επεξεργασία κώδικα]

Πραγματική Ανάλυση[Επεξεργασία | επεξεργασία κώδικα]

Η Πραγματική Ανάλυση (δηλαδή η μελέτη συναρτήσεων με πραγματικές μεταβλητές) είναι ο κλάδος της μαθηματικής ανάλυσης που ασχολείται με πραγματικούς αριθμούς και με συναρτήσεις πραγματικών μεταβλητών.Πιο συγκεκριμένα ασχολείται με τις αναλυτικές ιδιότητες πραγματικών συναρτήσεων και ακολουθιών καθώς και με σύγκλιση και όρια τους, τον Λογισμό πραγματικών αριθμών, τη συνέχεια και την κυρτότητα συναρτήσεων πραγματικών μεταβλητών.

Μιγαδική Ανάλυση[Επεξεργασία | επεξεργασία κώδικα]

Ευρέως γνωστή και ως Θεωρία Συναρτήσεων Μιγαδικών Μεταβλητών, η Μιγαδική Ανάλυση είναι ο κλάδος της μαθηματικής ανάλυσης που εξετάζει συναρτήσεις μιγαδικών αριθμών. Έχει μεγάλη εφαρμογή σε πολλά πεδία των μαθηματικών όπως η Αλγεβρική Γεωμετρία, η Θεωρία Αριθμών, τα Εφαρμοσμένα Μαθηματικά καθώς επίσης και στη Φυσική στους τομείς της Υδροδυναμικής, της Θερμοδυναμικής, της Μηχανικής και της Κβαντομηχανικής.

Συναρτησιακή Ανάλυση[Επεξεργασία | επεξεργασία κώδικα]

Συναρτησιακή Ανάλυση είναι ο τομέας των μαθηματικών, ο πυρήνας του οποίου είναι η μελέτη διανυσματικών χώρων εφοδιασμένων με μια σχετική δομή (όπως εσωτερικό γινόμενο, νόρμα κλπ) και των γραμμικών τελεστών που δρουν πάνω σε αυτούς του χώρους. Οι ιστορικές ρίζες της Συναρτησιακής Ανάλυσης προέρχονται από τη μελέτη χώρων συναρτήσεων και μετασχηματισμών όπως αυτός του Fourier. Αυτός ο τρόπος μελέτης έχει φανεί πολύ χρήσιμος στις διαφορικές και ολοκληρωτικές εξισώσεις.

Διαφορικές Εξισώσεις[Επεξεργασία | επεξεργασία κώδικα]

Μια Διαφορική Εξίσωση είναι μια μαθηματική εξίσωση που περιέχει μια άγνωστη συνάρτηση (την οποία καλούμαστε να προσδιορίσουμε),διάφορες μεταβλητές που έχουν να κάνουν με τιμές της οπως επίσης και τις παραγώγους της σε διάφορες τάξεις. Οι Διαφορικές Εξισώσεις παίζουν σημαντικό ρόλο στη Μηχανική, στη Φυσική στη Βιολογία και σε άλλες επιστήμες.

Οι Διαφορικές εξισώσεις εξελίσσονται σε πολλούς τομείς της επιστήμης και της τεχνολογίας, συγκεκριμένα όταν μια καθοριστική σχέση που περιέχει κάποιες συνεχώς μεταβαλλόμενες ποσότητες και τους ρυθμούς μεταβολής στον χώρο ή/και τον χρόνο, είναι γνωστή. Αυτό φαίνεται στην Κλασσική Μηχανική, όπου η κίνηση ενός σώματος περιγράφεται από την θέση και την ταχύτητα του ως χρονικές συναρτήσεις. Οι Νόμοι του Νεύτωνα επιτρέπουν (δοσμένης της θέσης, ταχύτητας, επιτάχυνσης και των διαφόρων δυνάμεων που ασκούνται σε ένα σώμα) να εκφραστούν αυτές οι ποσότητες δυναμικά ως διαφορικές εξισώσεις για την άγνωστη θέση του σώματος συναρτήσει του χρόνου.

Θεωρία Μέτρου[Επεξεργασία | επεξεργασία κώδικα]

Μέτρο σε ένα σύνολο, λέμε το συστηματικό τρόπο να εκχωρίσουμε έναν αριθμό σε κάθε κατάλληλο υποσύνολο αυτού του συνόλου, διαισθητικά ερμηνεύεται ως το μέγεθος του.Το Μέτρο δηλαδή είναι γενίκευση των εννοιών του μήκους, της επιφάνειας και του όγκου.Ένα πολύ σημαντικό παράδειγμα αποτελεί το Μέτρο Λεμπέγκ σε έναν Ευκλείδιο Χώρο που εισάγει το συμβατικό μήκος, επιφάνεια και όγκο της Ευκλείδιας Γεωμετρίας σε κατάλληλα αντικείμενα σε n-διάστατους Ευκλειδίους Χώρους \mathbb{R}^n. Για παράδειγμα, το Μέτρο Λεμπέγκ του διαστήματος \left[0, 1\right] στους πραγματικούς είναι 1.

Εξωτερικοί σύνδεσμοι[Επεξεργασία | επεξεργασία κώδικα]