Υπερβολική γεωμετρία

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Μετάβαση σε: πλοήγηση, αναζήτηση
Υπερβολική Γεωμετρία
Ταξινόμηση
Dewey 516
MSC2010 51M10
Γραμμές που διέρχονται από δεδομένο σημείο Ρ και είναι ασυμπτωτικές στην ευθεία R
Ένα τρίγωνο επί "επιπέδου" σχήματος σέλας (υπερβολικό παραβολοειδές), καθώς επίσης και δύο αποκλίνουσες υπερπαράλληλες ευθείες

Στα μαθηματικά, η υπερβολική γεωμετρία (επίσης ονομάζεται γεωμετρία του Λομπατσέφσκι (Лобаче́вский)) είναι μια μη-ευκλείδεια γεωμετρία, δηλαδή μια γεωμετρία στην οποία ορισμένα από τα αξιώματα της ευκλείδειας γεωμετρίας δεν ισχύουν. Συγκεκριμένα, στην υπερβολική γεωμετρία δεν ισχύει το αξίωμα των παραλλήλων. Το αξίωμα των παραλλήλων της δισδιάστατης ευκλείδειας γεωμετρίας αντιστοιχεί στην πρόταση ότι, για οποιαδήποτε (ευθεία) γραμμή I και ένα σημείο P που δεν ανήκει στην I υπάρχει ακριβώς μία και μόνο (ευθεία) γραμμή που διέρχεται από το P και δεν τέμνει την I, δηλαδή είναι παράλληλη στην I. Στην υπερβολική γεωμετρία υπάρχουν τουλάχιστον δύο ξεχωριστές γραμμές που διέρχονται από το P και οι οποίες δεν τέμνουν την I, και το αξίωμα των παραλλήλων ευθειών είναι για την υπερβολική γεωμετρία εσφαλμένο. Έχουν κατασκευαστεί μοντέλα εντός της ευκλείδειας που υπακούν στα αξιώματα της υπερβολικής γεωμετρίας, το οποίο δείχνει ότι το αξίωμα των παραλλήλων είναι ανεξάρτητο από τα άλλα αξιώματα του Ευκλείδη.

Δεν υπάρχει ακριβές υπερβολικό αντίστοιχο των ευκλείδειων παράλληλων ευθειών, με αποτέλεσμα η χρήση του όρου παράλληλο να ποικίλει ανάμεσα στους συγγραφείς. Σ ’αυτό το άρθρο, δύο γραμμές που δεν τέμνονται όσο κι αν τις επεκτείνουμε ονομάζονται ασυμπτωτικές και δύο γραμμές που έχουν μία κοινή κάθετο ονομάζονται υπερπαράλληλες: η απλή λέξη παράλληλη μπορεί να αναφέρεται και στα δύο είδη γραμμών.

Μία χαρακτηριστική ιδιότητα της υπερβολικής γεωμετρίας είναι ότι το άθροισμα των γωνιών ενός τριγώνου αντιστοιχεί σε λιγότερο από μία ευθεία (μισό ημικύκλιο). Στο όριο, καθώς οι κορυφές πηγαίνουν προς το άπειρο, υπάρχουν ακόμη και ιδεατά υπερβολικά τρίγωνα με άθροισμα γωνιών 0 μοίρες.