Σύνθετος αριθμός

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Μετάβαση σε: πλοήγηση, αναζήτηση

Ο Σύνθετος αριθμός είναι ο αριθμός που έχει έναν τουλάχιστον διαιρέτη επιπλέον από τον εαυτό του και τη μονάδα. Ως εκ τούτου σύνθετος αριθμός είναι ένας οποιοσδήποτε ακέραιος, μεγαλύτερος του 1, που δεν είναι πρώτος αριθμός.

Αναλυτικά[Επεξεργασία | επεξεργασία κώδικα]

Αναλυτικότερα εάν n είναι ένας ακέραιος και υπάρχουν δύο αριθμοί a > 1 και b < n τέτοιοι ώστε n = a × b, τότε το n είναι σύνθετος αριθμός. Ο αριθμός 1 δεν είναι ούτε πρώτος ούτε σύνθετος. Επίσης όλοι οι άρτιοι αριθμοί μεγαλύτεροι του 2 είναι εξ ορισμού σύνθετοι. Τέλος ο μικρότερος σύνθετος αριθμός είναι ο 4.

Οι πρώτοι 105 σύνθετοι[Επεξεργασία | επεξεργασία κώδικα]

Οι πρώτοι 105 σύνθετοι αριθμοί είναι: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 129, 130, 132, 133, 134, 135, 136, 138, 140.

Θεμελιώδες θεώρημα της αριθμητικής[Επεξεργασία | επεξεργασία κώδικα]

Κάθε σύνθετος αριθμός μπορεί να γραφεί ως γινόμενο δύο ή και περισσοτέρων, όχι απαραίτητα διαφορετικών, πρώτων αριθμών. Αυτό καλείται θεμελιώδες θεώρημα της αριθμητικής.

Τύποι σύνθετων[Επεξεργασία | επεξεργασία κώδικα]

Ένας τρόπος για να επιβεβαιώσουμε ότι ένας αριθμός είναι σύνθετος, είναι να υπολογίσουμε τον αριθμό των πρώτων παραγόντων στον οποίο αναλύεται. Ένας σύνθετος αριθμός που αναλύεται μόνο σε δύο διαφορετικούς πρώτους λέγεται ημιπρώτος (παράδειγμα το 14, που αναλύεται σε 2 · 7 = 14). Επίσης ένας σύνθετος αριθμός με ανάλυση τριών πρώτων παραγόντων καλείται σφηνικός αριθμός (παράδειγμα ο αριθμός 30 = 2 · 3 · 5).

Δείτε επίσης[Επεξεργασία | επεξεργασία κώδικα]

Παραπομπές[Επεξεργασία | επεξεργασία κώδικα]

Πηγές[Επεξεργασία | επεξεργασία κώδικα]

  • Εγκυκλοπαίδεια Πάπυρος Λαρούς Μπριτάννικα, τόμος 11, σελίδα 30.

Εξωτερικοί σύνδεσμοι[Επεξεργασία | επεξεργασία κώδικα]

Στα αγγλικά:

Στο λήμμα αυτό έχει ενσωματωθεί κείμενο από το λήμμα Composite number της Αγγλικής Βικιπαίδειας, η οποία διανέμεται υπό την GNU FDL και την CC-BY-SA 3.0. (ιστορικό/συντάκτες).