Τέλειος αριθμός

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Μετάβαση σε: πλοήγηση, αναζήτηση

Τέλειος λέγεται ένας φυσικός αριθμός όταν το άθροισμα των διαιρετών του, εκτός του αριθμού, είναι ίσο τον αριθμό δηλ. ο n είναι τέλειoς αν και μόνο αν σ(n) = 2n.

Ο μικρότερος τέλειος αριθμός είναι ο 6. Οι διαιρέτες του 6 είναι οι 1, 2, 3 και το άθροισμα αυτών είναι ίσο με 6 (1+2+3=6). Άλλοι τέλειοι αριθμοί είναι οι 28 = 1 + 2 + 4 + 7 + 14, 496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 και ο 8128. Αυτοί είναι και οι μόνοι γνωστοί τέλειοι κατά την αρχαιότητα.

Ο επόμενος τέλειος αριθμός είναι ο 33550336 και ακολουθούν οι 8589869056, 137438691328, 2305843008139952128, 2658455991569831744654692615953842176, 191561942608236107294793378084303638130997321548169216.

Άρτιοι τέλειοι αριθμοί[Επεξεργασία | επεξεργασία κώδικα]

Ο Ευκλείδης ανακάλυψε ότι οι τέσσερις πρώτοι τέλειοι αριθμοί παράγονται από τον τύπο 2n−1(2n − 1):

Για n = 2:   21(22 − 1) = 6
Για n = 3:   22(23 − 1) = 28
Για n = 5:   24(25 − 1) = 496
Για n = 7:   26(27 − 1) = 8128

Παρατηρώντας ότι τα n στον παραπάνω τύπο είναι πρώτοι αριθμοί, ο Ευκλείδης απέδειξε ότι ο τύπος 2n−1(2n − 1) δίνει έναν άρτιο τέλειο αριθμό όταν το 2n − 1 είναι πρώτος.

Οι Αρχαίοι Έλληνες μαθηματικοί έκαναν και άλλες εικασίες για τους τέλειους αριθμούς από τις οποίες όμως οι περισσότερες αποδείχθηκαν λανθασμένες.

Είναι εύκολο να δειχθεί ότι αν ο 2^n-1 είναι πρώτος, τότε ο n είναι πρώτος, χωρίς όμως να ισχύει και το αντίστροφο. Οι πρώτοι αριθμοί της μορφής 2n − 1 είναι γνωστοί ως πρώτοι του Μερσέν (Mersenne), από το όνομα του Μαρίν Μερσέν που έζησε τον 17ο αιώνα και τους μελέτησε πρώτος.

Δύο χιλιάδες χρόνια μετά τον Ευκλείδη, ο Όιλερ (Euler) απέδειξε ότι ο τύπος 2n−1(2n − 1) μας δίνει όλους τους άρτιους τέλειους αριθμούς. Το αποτέλεσμα αυτό είναι γνωστό σαν Θεώρημα Ευκλείδη-Όιλερ.

Μέχρι σήμερα, με τη βοήθεια ηλεκτρονικών υπολογιστών, είναι γνωστοί 48 πρώτοι του Μερσέν και άρα και 48 άρτιοι τέλειοι αριθμοί. Ο μεγαλύτερος από αυτούς - ο 48ος - αποτελείται από 17.425.170 ψηφία. Δεν είναι γνωστό αν υπάρχουν άπειροι πρώτοι του Μερσέν. Το σύστημα GIMPS ασχολείται με την εύρεση πρώτων του Μερσέν.

Περιττοί τέλειοι αριθμοί[Επεξεργασία | επεξεργασία κώδικα]

Είναι άγνωστο αν υπάρχουν περιττοί τέλειοι αριθμοί. Υπάρχουν ωστόσο μια σειρά αποτελέσματα χωρίς όμως οι μαθηματικοί να έχουν φτάσει στην απάντηση της ερώτησης αν υπάρχουν ή όχι.

Τα μέχρι σήμερα γνωστά αποτελέσματα μας λένε ότι κάθε περιττός τέλειος αριθμός N πρέπει να είναι της μορφής 12m + 1 ή 36m + 9 και να ικανοποιεί τις ακόλουθες ιδιότητες:

  • N είναι της μορφής
N=q^{\alpha} p_1^{2e_1} \ldots p_k^{2e_k},
όπου q, p1, …, pk είναι διαφορετικοί πρώτοι και q ≡ α ≡ 1 (mod 4) (Όιλερ).
  • Στην παραπάνω παραγοντοποίηση, ο k είναι τουλάχιστον 8, και ο k είναι τουλάχιστον 11 αν το 3 δεν διαιρεί το N (Nielsen 2006).
  • Στην παραπάνω παραγοντοποίηση, ένας τουλάχιστον από τους e_1, e_2, \ldots e_k είναι μεγαλύτερος από 1. (Steuerwald 1937)
  • Ο μεγαλύτερος πρώτος που διαιρεί το N είναι μεγαλύτερος από 108 (Takeshi Goto and Yasuo Ohno, 2006).
  • Ο δεύτερος μεγαλύτερος πρώτος που διαιρεί το N είναι μεγαλύτερος από 104 , και ο τρίτος μεγαλύτερος πρώτος είναι μεγαλύτερος από 100 (Iannucci 1999, 2000).
  • Ο N έχει τουλάχιστον 75 πρώτους στην παραγοντοποίησή του, υπολογίζοντας κάθε μια από τις 2ek επαναλήψεις του pk χωριστά (Kevin Hare 2005).
  • Ο N είναι μικρότερος από 2^{4^{n}} όπου n είναι ο αριθμός των διακεκριμένων πρώτων που τον διαιρούν (οπότε n = k + 1 όπου k όπως πριν) (Nielsen 2003).

Αν ο N υπάρχει, τότε είναι μεγαλύτερος από 10500 σύμφωνα με τους υπoλογισμούς του [1].

Παραπομπές[Επεξεργασία | επεξεργασία κώδικα]

  • Takeshi Goto and Yasuo Ohno, Odd perfect numbers have a prime factor exceeding 108. Preprint, 2006. Διαθέσιμο εδώ: "Largest prime factor of an odd perfect number".
  • Kevin Hare, New techniques for bounds on the total number of prime factors of an odd perfect number. Preprint, 2005. Διαθέσιμο εδώ: [2].
  • Douglas E. Iannucci, "The second largest prime divisor of an odd perfect number exceeds ten thousand," Mathematics of Computation, volume 68, issue 228, pages 1749–1760, 1999.
  • Douglas E. Iannucci, "The third largest prime divisor of an odd perfect number exceeds one hundred," Mathematics of Computation, volume 69, issue 230, pages 867–879, 2000.
  • Pace P. Nielsen, "An upper bound for odd perfect numbers," Integers, vol. 3, A14, 9 pp. (electronic), 2003.
  • Pace P. Nielsen, Odd perfect numbers have at least nine different prime factors, Πρότυπο:Arxiv, 2006.
  • R. Steuerwald, Verscharfung einen notwendigen Bedingung fur die Existenz einen ungeraden vollkommenen Zahl, S.-B. Bayer. Akad. Wiss. 1937, 69–72.

Εξωτερικοί Σύνδεσμοι[Επεξεργασία | επεξεργασία κώδικα]