Μετάβαση στο περιεχόμενο

Κλασική μηχανική

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
(Ανακατεύθυνση από Κλασική Μηχανική)

Στη φυσική, η Κλασική Μηχανική είναι ένας από τούς δύο κύριους κλάδους της Μηχανικής, η οποία ασχολείται με το σύνολο των Φυσικών Νόμων που περιγράφουν την κίνηση σωμάτων υπό την επίδραση ενός συστήματος δυνάμεων. Η μελέτη της κίνησης των σωμάτων είναι αρχαία, κάνοντας την κλασική μηχανική έναν από τους παλαιότερους και ευρύτερους κλάδους της φυσικής, της μηχανικής και της τεχνολογίας.

Η κλασική μηχανική περιγράφει την κίνηση μακροσκοπικών αντικειμένων, από βλήματα έως και μέρη μηχανικών συστημάτων, καθώς και αστρονομικών αντικειμένων, όπως διαστημόπλοια, πλανήτες, αστέρια, και γαλαξίες. Εκτός αυτών, πολλές ειδικεύσεις μέσα στον τομέα ασχολούνται με Ρευστά (Αέρια, Υγρά), Στερεά, και άλλα ειδικά ζητήματα. Η κλασική μηχανική παρέχει εξαιρετικά ακριβή αποτελέσματα εφόσον το πεδίο της μελέτης περιορίζεται σε μεγάλα αντικείμενα και σε ταχύτητες που δε πλησιάζουν αυτήν του φωτός. Όταν έχουμε να κάνουμε με αντικείμενα αρκετά μικρά, είναι απαραίτητο να εισάγουμε τον άλλο κύριο κλάδο της μηχανικής την, κβαντομηχανική, η οποία συνενώνει τους μακροσκοπικούς νόμους της φυσικής με την Ατομική φύση της ύλης και χειρίζεται την κυματο-σωματιδιακή δυικότητα των ατόμων και των μορίων. Σε περιπτώσεις που η ταχύτητα των αντικειμένων πλησιάζει αυτήν του φωτός, η κλασική μηχανική επεκτείνεται από την Ειδική Σχετικότητα. Η Γενική Σχετικότητα ενώνει την Ειδική Σχετικότητα με τον νόμο της παγκόσμιας έλξης του Νεύτωνα, επιτρέποντας στους φυσικούς να χειριστούν την βαρυτική έλξη σε βαθύτερο επίπεδο.

Ο όρος κλασική μηχανική επινοήθηκε στις αρχές του 20ου αιώνα για να περιγράψει το σύστημα της φυσικής που ξεκίνησε ο Νεύτων και οι άλλοι φυσικοί φιλόσοφοι του 17ου αιώνα, χτίζοντας πάνω στις προηγούμενες αστρονομικές θεωρίες του Γιόχαν Κέπλερ, οι οποίες με την σειρά τους ήταν βασισμένες στις ακριβείς παρατηρήσεις του Τύχο Μπράχε και στις μελέτες του Γαλιλαίου για την κίνηση γήινων βλημάτων . Εφόσον αυτές οι πτυχές της Φυσικής αναπτύχθηκαν πολύ πριν την ανακάλυψη της κβαντικής μηχανικής και της σχετικότητας, μερικές πηγές εξαιρούν την θεωρία της σχετικότητας του Αϊνστάιν από αυτήν την κατηγορία. Παρ' όλα αυτά ένας μεγάλος αριθμός σύγχρονων πηγών περιλαμβάνουν την σχετικιστική μηχανική, η οποία από την δική τους οπτική αντιπροσωπεύει την κλασσική μηχανική στην πιο ανεπτυγμένη και ακριβή μορφή της.

Το αρχικό στάδιο ανάπτυξης της κλασικής μηχανικής συχνά αναφέρεται και ως Νευτώνεια μηχανική, και σχετίζεται με τις φυσικές έννοιες που προαναφέραμε και τις μαθηματικές μεθόδους που αναπτύχθηκαν από τον Νεύτωνα, και παράλληλα από τον Λάιμπνιτς, και άλλους. Αυτό αναλύεται διεξοδικότερα παρακάτω. Αργότερα, πιο αφηρημένες και γενικές μέθοδοι αναπτύχθηκαν,οδηγώντας σε ανασχηματισμούς της κλασικής μηχανικής γνωστές και ως Λαγκρανζιανή μηχανική και Χαμιλτονιανή μηχανική. Αυτή η ραγδαία πρόοδος έγινε στον 18ο και 19ο αιώνα, και επέκτεινε την μηχανική πέρα από το έργο του Νεύτωνα, κυρίως με την χρήση αναλυτικής μηχανικής. Τελικά, τα μαθηματικά που αναπτύχθηκαν για αυτές τις νέες θεωρίες ήταν η βάση για την δημιουργία της κβαντικής μηχανικής.

Μερικοί Έλληνες φιλόσοφοι της αρχαιότητας, ανάμεσα τους και ο Αριστοτέλης, ιδρυτής της Αριστοτέλειας φυσικής, ήταν οι πρώτοι που πίστευαν ότι "όλα συμβαίνουν για κάποιο λόγο" και ότι θεωρητικές αρχές μπορούν να βοηθήσουν στο να καταλάβουμε την φύση. Σε έναν σύγχρονο αναγνώστη, πολλές από αυτές τις ιδέες φαίνονται λογικές, όμως υπάρχει μία έλλειψη σε μαθηματική θεωρία και ελεγχόμενο πείραμα, όπως τα ξέρουμε σήμερα. Αυτά τα δύο έπαιξαν καθοριστικό ρόλο στον σχηματισμό της σύγχρονης επιστήμης, και ξεκίνησαν με την κλασική μηχανική.

Η μεσαιωνική "επιστήμη των βαρών" (μηχανική) χρωστάει πολλά στο έργο του Jordanus de Nemore. Στο βιβλίο του Elementa super demonstrationem ponderum, εισάγει την έννοια της "θεσιακής βαρύτητας" και την χρήση συνθετικών δυνάμεων.

Θεώρια της ώθησης σύμφωνα με τον Αλβερτος της Σαξονίας.

Η πρώτη εξήγηση για τις κινήσεις των πλανητών ήταν το βιβλίο του Γιόχαν Κέπλερ Astronomia nova που εκδόθηκε το 1609. Συμπέρανε, βασιζόμενος στις παρατηρήσεις της τροχιάς του Άρη του Τύχο Μπράχε, οι τροχιές ήταν ελλείψεις. Αυτή η διαφωνία με τον μεσαιωνικό τρόπο σκέψης συνέβη την ίδια εποχή που ο Γαλιλαίος πρότεινε αφηρημένους μαθηματικούς νόμους για την κίνηση των αντικειμένων. Πραγματοποίησε (ή όχι) το διάσημο πείραμα πετώντας δύο μπάλες κανονιού διαφορετικού βάρους από τον Πύργο της Πίζας, δείχνοντας ότι φτάνουν στο έδαφος ταυτόχρονα. Η πραγματοποίηση αυτού του πειράματος είναι αμφίβολη, αλλά, το σημαντικό είναι ότι πραγματοποίησε ποσοτικά πειράματα κυλώντας μπάλες σε κεκλιμένο επίπεδο. Η θεωρία του για την επιταχυνόμενη κίνηση ήταν το αποτέλεσμα τέτοιων πειραμάτων, και αποτελούν ακρογωνιαίο λίθο της κλασικής μηχανικής.

Σερ Ισαάκ Νεύτων (1643–1727), ένας σημαντικός επιστήμονας στην ιστορία της φυσικής του οποίου οι τρεις νόμοι αποτελούν την βάση της κλασικής μηχανικής

Ως βάση για τις αρχές της φυσικής φιλοσοφίας του, ο Νεύτων πρότεινε τρεις νόμους της κίνησης: τον 1ο Νόμο γνωστό ως νόμο της αδράνειας, τον 2ο Νόμο γνωστό ως νόμο της κίνησης και τον 3ο Νόμο γνωστό ως αξίωμα δράσης-αντίδρασης, θέτοντας έτσι τα θεμέλια της κλασικής μηχανικής. Στον 1ο και 2ο νόμο του Νεύτωνα δόθηκε σωστή επιστημονική και μαθηματική αντιμετώπιση στο βιβλίο του Νεύτωνα Philosophiæ Naturalis Principia Mathematica (Οι Μαθηματικές αρχές της Φυσικής Φιλοσοφίας), στο οποίο τους διακρίνει από προηγούμενες προσπάθειες εξήγησης παρόμοιων φαινομένων, οι οποίες ήταν είτε ατελής, λανθασμένες, ή δεν ήταν μαθηματικά διατυπωμένες.

Ο Νεύτων επίσης εισήγαγε τις έννοιες της διατήρησης της ορμής και της στροφορμής. Στην μηχανική, ο Νεύτων ήταν αυτός που παρείχε την πρώτη επιστημονική και μαθηματική διατύπωση της βαρύτητας στον Νόμο της παγκόσμιας έλξης. Ο συνδυασμός των νόμων της κίνησης και της βαρυτικής έλξης του Νεύτωνα παρέχουν την πιο πλήρη και την πιο ακριβή περιγραφή της κλασικής μηχανικής. Έδειξε ότι αυτοί οι νόμοι εφαρμόζονται σε καθημερινά φαινόμενα καθώς και σε ουράνια αντικείμενα. Για την ακρίβεια, εξασφάλισε μια θεωρητική εξήγηση για τους νόμους του Κέπλερ για την κίνηση των πλανητών.

Ο Νεύτων, παράλληλα με τις ανακαλύψεις του στην φυσική, ανάπτυξε τον απειροστικό λογισμό και τον χρησιμοποίησε για να κάνει μαθηματικούς υπολογισμούς. Για να είναι αποδεκτά τα Principia, διαμορφώθηκε εξ' ολοκλήρου με γεωμετρικές μεθόδους που ήταν οι πλέον καθιερωμένες στην εποχή του, οι οποίες όμως γρήγορα επισκιάστηκαν από τον λογισμό του. Ωστόσο ήταν ο Λάιμπνιτς που ανέπτυξε τους όρους παράγωγος και ολοκλήρωμα που προτιμούνται σήμερα.

Η μεγαλύτερη συμβολή του Χάμιλτον ήταν ίσως η αναδιατύπωση της Νευτώνειας μηχανικής, η οποία καλείται Χαμιλτονιανή μηχανική.

Ο Νεύτων, και οι περισσότεροι σύγχρονοι του, με την αξιομνημόνευτη εξαίρεση του Κρίστιαν Χόυχενς, δούλεψαν με την πεποίθηση ότι η κλασική μηχανική μπορούσε να εξηγήσει όλα τα φαινόμενα, συμπεριλαμβανομένου και του φωτός, στην μορφή της γεωμετρικής οπτικής. Ακόμη και όταν ανακαλύφθηκαν οι λεγόμενοι δακτύλιοι του Νεύτωνα (ένα φαινόμενο κυματικής συμβολής) η εξήγηση του παρέμεινε η ίδια, η μοριακή θεωρία του φωτός.

Μετά τον Νεύτωνα, η κλασική μηχανική έγινε ο κυριότερος τομέας ερευνών στα μαθηματικά και στην φυσική. Μετά τον Νεύτωνα, αρκετοί ανασχηματισμοί επέτρεψαν προοδευτικά την εύρεση λύσεων σε έναν μεγάλο αριθμό προβλημάτων. Η πρώτη αξιομνημόνευτη αναδιατύπωση έγινε το 1788 από τον Ζοζέφ Λουί Λαγκράνζ. Η Λαγκρανζιανή μηχανική με την σειρά της αναδιατυπώθηκε το 1833 από τον Γουίλιαμ Ρόουαν Χάμιλτον.

Μερικές δυσκολίες που ανακαλύφθηκαν στα τέλη του 19ου αιώνα μπορούσαν να επιλυθούν μόνο από μοντέρνα φυσική. Μερικές από αυτές τις δυσκολίες σχετίζονται με την συμβατότητα της ηλεκτρομαγνητικής θεωρίας, και του διάσημου πειράματος των Michelson-Morley (Mάϊκελσον και Μόρλεϋ). Η ανάλυση αυτών των προβλημάτων οδήγησε στην ειδική θεωρία της σχετικότητας, η οποία συχνά περιλαμβάνεται στον όρο κλασική μηχανική.

Ένα δεύτερο σύνολο δυσκολιών σχετίζεται με την θερμοδυναμική. Όταν συνδυάζεται με την θερμοδυναμική, η κλασική μηχανική οδηγεί στο παράδοξο του Γκίμπς της κλασικής στατιστικής μηχανικής, στο οποίο η εντροπία δεν είναι μία καλώς-ορισμένη ποσότητα. Το πρόβλημα της ακτινοβολίας μέλανος σώματος δεν μπορούσε να λυθεί χωρίς την εισαγωγή των κβάντων. Καθώς τα πειράματα έφταναν σε ατομικό επίπεδο, η κλασική μηχανική αποτύγχανε να εξηγήσει, ακόμα και στο περίπου, βασικά πράγματα όπως τις ενεργειακές στάθμες και τα μεγέθη ατόμων και το φωτο-ηλεκτρικό φαινόμενο. Η προσπάθεια επίλυσης τέτοιων προβλημάτων οδήγησε στην ανάπτυξη της κβαντικής μηχανικής.

Από τα τέλη του 20ου αιώνα, η κλασική μηχανική έπαψε να είναι μια ανεξάρτητη θεωρία στην φυσική. Αντίθετα, η κλασική μηχανική θεωρείται μια κατά προσέγγιση θεωρία της γενικότερης κβαντικής μηχανικής. Έμφαση δίνεται πλέον στην κατανόηση των θεμελιωδών δυνάμεων της φύσης όπως στο Καθιερωμένο μοντέλο και στις πιο μοντέρνες επεκτάσεις του μια ενιαία θεωρία των πάντων.[1] Η κλασική μηχανική είναι πλέον μια θεωρία για την μελέτη της μη-κβαντικής μηχανικής, δηλαδή σωματίδια χαμηλής ενέργειας σε ασθενή βαρυτικά πεδία. Στον 21ο αιώνα η κλασική μηχανική επεκτάθηκε στο μιγαδικό πεδίο και η μιγαδική κλασική μηχανική παρουσιάζει συμπεριφορά όμοια με την κβαντική μηχανική .[2]

Περιγραφή της Θεωρίας

[Επεξεργασία | επεξεργασία κώδικα]
Η ανάλυση της κίνησης βλήματος αποτελεί μέρος της κλασικής μηχανικής.

Τα ακόλουθα μας εισάγουν στις βασικές έννοιες της κλασικής μηχανικής. Χάριν απλότητας, συχνά αντικείμενα του πραγματικού κόσμου αναπαριστώνται σαν σημειακά σωματίδια, αντικείμενα με αμελητέες διαστάσεις. Η κίνηση ενός σημειακού σωματιδίου χαρακτηρίζεται από έναν μικρό αριθμό παραμέτρων: την θέση του, την μάζα του, και τις δυνάμεις που εφαρμόζονται σε αυτό. Θα αναλύσουμε κάθε μια από αυτές τις παραμέτρους με την σειρά.

Στην πραγματικότητα, τα αντικείμενα που μπορεί να περιγράψει η κλασική μηχανική έχουν πάντα μη μηδενικές διαστάσεις. (Η φυσική των "πολύ" μικρών σωματιδίων, όπως τα ηλεκτρόνια, περιγράφεται από την κβαντική μηχανική). Αντικείμενα με μη-μηδενικές διαστάσεις έχουν πιο πολύπλοκη συμπεριφορά από τα υποθετικά σημειακά αντικείμενα, εξαιτίας των επιπρόσθετων διαστάσεων—για παράδειγμα, μια μπάλα μπορεί να περιστρέφεται ενώ κινείται στον αέρα. Ωστόσο, τα αποτελέσματα για σημειακά σωματίδια μπορούν να χρησιμοποιηθούν για την μελέτη τέτοιων αντικειμένων αν τα αντιμετωπίσουμε σαν σύνθετα αντικείμενα, που είναι φτιαγμένα από έναν μεγάλο αριθμό αλληλοεπιδρούμενων σημειακών σωματιδίων. Το κέντρο βάρους ενός σύνθετου αντικειμένου συμπεριφέρεται σαν ένα σημειακό σωματίδιο.

Η κλασική μηχανική χρησιμοποιεί έννοιες της κοινής λογικής για να περιγράψει το πως η ύλη και οι δυνάμεις υπάρχουν και αλληλεπιδρούν. Υποθέτει ότι η ύλη και η ενέργεια έχουν καθορισμένες , μετρήσιμες ιδιότητες όπως η θέση ενός αντικειμένου στον χώρο και η ταχύτητα του. Επίσης υποθέτει ότι τα αντικείμενα μπορούν να επηρεάζονται άμεσα μόνο από τον άμεσο περιβάλλοντα χώρο, γνωστή και ως αρχή της τοπικότητας. Στην κβαντική μηχανική τα αντικείμενα μπορεί να έχουν άγνωστη θέση και ταχύτητα, ή να αλληλεπιδρούν στιγμιαία με άλλα αντικείμενα σε απόσταση.

Θέση και παράγωγοι αυτής

[Επεξεργασία | επεξεργασία κώδικα]
Τα "μηχανικά" μεγέθη στο SI)
Θέση
Γωνιακή θέση αδιάστατο
(ακτίνια: )
Ταχύτητα
Γωνιακή ταχύτητα
Επιτάχυνση
Γωνιακή επιτάχυνση
Ροπή αδράνειας
Ορμή
Στροφορμή
Δύναμη
Ροπή δύναμης
Ενέργεια
Ισχύς
Πίεση και/ή πυκνότητα ενέργειας
Κυρτότητα επιφάνειας
Σταθερά ελατηρίου
Ισχύς ηλεκτρομαγνητικής ακτινοβολίας
και ροή ενέργειας
Κινηματικό ιξώδες
Δυναμικό ιξώδες
Πυκνότητα (πυκνότητα μάζας)
Πυκνότητα (πυκνότητα βάρους)
Αριθμητική πυκνότητα
Δράση

Η θέση ενός σημειακού σωματιδίου καθορίζεται σε σχέση με ένα αυθαίρετο σταθερό σημείο αναφοράς, , στον χώρο, συνήθως συνοδευόμενο από ένα σύστημα συντεταγμένων, με το σημείο αναφοράς να βρίσκεται στην "αρχή" του συστήματος συντεταγμένων. Η θέση λοιπόν είναι το διάνυσμα από την αρχή στο σωματίδιο. Γενικά, το σημειακό σωματίδιο δεν χρειάζεται να είναι σταθερό σε σχέση με το , έτσι το είναι μια συνάρτηση του , του χρόνου που πέρασε από ένα αυθαίρετο αρχικό χρονικό σημείο. Στην προ-Αϊνστάιν σχετικότητα (γνωστή ως σχετικότητα του Γαλιλαίου), ο χρόνος θεωρείται απόλυτος, αυτό σημαίνει ότι το χρονικό διάστημα μεταξύ δυο τυχαίων γεγονότων είναι το ίδιο για όλους τους παρατηρητές. Επιπρόσθετα εκτός από το να βασίζεται στον απόλυτο χρόνο, η κλασική μηχανική υιοθετεί την Ευκλείδεια γεωμετρία για την κατασκευή του χώρου.[3]

Ταχύτητα και μέτρο αυτής

[Επεξεργασία | επεξεργασία κώδικα]

Η ταχύτητα, ή ο ρυθμός μεταβολής της θέσης ανάλογα με τον χρόνο, καθορίζεται ως η παράγωγος της θέσης σε σχέση με τον χρόνο ή

.

Στην κλασική μηχανική, οι ταχύτητες είναι άμεσα αθροίσιμες. Για παράδειγμα, αν ένα αυτοκίνητο ταξιδεύει ανατολικά με προσπεράσει ένα άλλο αυτοκίνητο που ταξιδεύει ανατολικά με , τότε από την "οπτική γωνία" του δεύτερου αυτοκινήτου, το πρώτο ταξιδεύει ανατολικά με . Αντίθετα, από την οπτική γωνία του πρώτου αυτοκινήτου, το δεύτερο ταξιδεύει με προς τα δυτικά. Οι ταχύτητες είναι άμεσα αθροίσιμες ως διανυσματικές ποσότητες. Έτσι πρέπει να αντιμετωπίζονται με χρήση διανυσματικής ανάλυσης.

Αν η ταχύτητα του πρώτου αντικειμένου στην προηγούμενη συζήτηση καθορίζεται από το διάνυσμα και η ταχύτητα του δεύτερου αντικειμένου από το διάνυσμα , τότε η ταχύτητα του πρώτου αντικειμένου αν ιδωθεί από την σκοπιά του δεύτερου είναι:

ενώ η ταχύτητα του δεύτερου αντικειμένου από την σκοπιά του πρώτου θα είναι:

Όταν και τα δυο αντικείμενα κινούνται πάνω στην ίδια διεύθυνση, οι παραπάνω εξισώσεις απλοποιείται ως:

Η επιτάχυνση, ή ο ρυθμός μεταβολής της ταχύτητας, είναι η παράγωγος της ταχύτητας ως προς τον χρόνο, η δεύτερη παράγωγος της θέσης σε σχέση με τον χρόνο ή:

Η επιτάχυνση μπορεί να προκύψει με την αλλαγή με την πάροδο του χρόνου του μεγέθους της ταχύτητας ή την αλλαγή της κατεύθυνσης της ή και τα δύο. Αν το μέγεθος της ταχύτητας μειώνεται, αυτό λέγεται μερικές φορές "επιβράδυνση", αλλά γενικά οποιαδήποτε αλλαγή της ταχύτητας με την πάροδο του χρόνου, συμπεριλαμβανομένης της επιβράδυνσης, αναφέρεται απλά ως επιτάχυνση.

Συστήματα αναφοράς

[Επεξεργασία | επεξεργασία κώδικα]

Ενώ η θέση και η ταχύτητα και η επιτάχυνση ενός σωματιδίου μπορούν να αναφερθούν ως προς οποιονδήποτε παρατηρητή σε οποιοδήποτε στάδιο της κίνησης, η κλασική μηχανική υποθέτει την ύπαρξη μιας ειδικής οικογένειας συστημάτων αναφοράς στα οποία οι νόμοι της φύσης παίρνουν μια σχετικά απλή μορφή. Αυτά τα ειδικά συστήματα αναφοράς καλούνται αδρανειακά συστήματα. Ένα αδρανειακό σύστημα είναι τέτοιο ώστε όταν ένα σώμα στο οποίο δεν ασκούνται δυνάμεις (μια εξιδανικευμένη κατάσταση) ειδωθεί μέσα από αυτό, φαίνεται σαν να είναι ακίνητο ή να κινείται ευθύγραμμα και ομαλά. Αυτός είναι ο θεμελιώδης ορισμός ενός αδρανειακού συστήματος.Τα αδρανειακά συστήματα χαρακτηρίζονται από το γεγονός ότι όλες οι δυνάμεις που υπεισέρχονται στους φυσικούς νόμους του παρατηρητή πηγάζουν από προσδιορίσιμες πηγές (Φορτία, βαρυτικά σώματα κτλ). Ένα μη-αδρανειακό σύστημα αναφοράς είναι ένα που επιταχύνεται ως προς ένα αδρανειακό σύστημα, και σε ένα τέτοιο μη-αδρανειακό σύστημα αναφοράς ένα σωματίδιο είναι ένα αντικείμενο το οποίο επιταχύνεται από φανταστικές δυνάμεις που μπαίνουν στις εξισώσεις της κίνησης μόνο σαν αποτέλεσμα της επιταχυνόμενης κίνησης του, και δεν πηγάζει από κάποια προσδιορίσιμη πηγή. Αυτές οι φανταστικές δυνάμεις είναι επιπρόσθετες στις πραγματικές δυνάμεις που συναντώνται σε ένα αδρανειακό σύστημα αναφοράς. Η μέθοδος προσδιορισμού αυτών των δυνάμεων είναι μέθοδος "κλειδί" στα αδρανειακά συστήματα. Για πρακτικούς λόγους, συστήματα αναφοράς που δεν επιταχύνονται ως προς μακρινά άστρα θεωρούνται ως καλές προσεγγίσεις ενός αδρανειακού συστήματος.

Έστω δυο συστήματα αναφοράς και . Για τους παρατηρητές σε κάθε ένα από αυτά τα συστήματα αναφοράς ένα γεγονός έχει χωρο-χρονικές συντεταγμένες το σύστημα και στο σύστημα . Αν υποθέσουμε ότι ο χρόνος μετράται το ίδιο σε όλα τα συστήματα αναφοράς, και αν απαιτήσουμε όταν , τότε η σχέση μεταξύ των χωρο-χρονικών συντεταγμένων του ίδιου γεγονότος αν αυτό παρατηρηθεί από τα συστήματα αναφοράς και , τα οποία κινούνται με μια σχετική ταχύτητα στον άξονα είναι:

.

Αυτό το σύνολο τύπων καθορίζει έναν μετασχηματισμό ομάδας γνωστό και ως Μετασχηματισμό του Γαλιλαίου. Αυτή η ομάδα είναι μια ειδική περίπτωση της ομάδας του Πουανκαρέ που χρησιμοποιείται στην ειδική σχετικότητα. Αυτή η ειδική περίπτωση εφαρμόζεται όταν η ταχύτητα είναι πολύ μικρή σε σχέση με το , την ταχύτητα του φωτός.

Οι μετασχηματισμοί έχουν τις ακόλουθες συνέπειες:

  • (η ταχύτητα ενός σωματιδίου από την "οπτική γωνία" του είναι πιο αργή κατά από την ταχύτητα ως προς το )
  • (η επιτάχυνση του σωματιδίου είναι η ίδια σε οποιοδήποτε αδρανειακό σύστημα αναφοράς)
  • (η δύναμη που ασκείται σε ένα σωματίδιο είναι η ίδια σε οποιοδήποτε αδρανειακό σύστημα αναφοράς)
  • η ταχύτητα του φωτός δεν είναι σταθερά στην κλασική μηχανική, ούτε η σημαντική θέση που κατέχει η ταχύτητα του φωτός στην σχετικιστική κβαντομηχανική έχει κάποια αντίστοιχη θέση στην κλασική μηχανική.

Δυνάμεις. Δεύτερος Νόμος του Νεύτωνα

[Επεξεργασία | επεξεργασία κώδικα]

Ο Νεύτων ήταν ο πρώτος που απέδωσε μαθηματικά την σχέση μεταξύ δύναμης και ορμής. Μερικοί φυσικοί ερμηνεύουν τον δεύτερο νόμο του Νεύτωνα ως έναν ορισμό της δύναμης και της μάζας, ενώ άλλοι τον θεωρούν έναν θεμελιώδη νόμο της φύσης. Και οι δύο ερμηνείες έχουν τις ίδιες (μαθηματικές) συνέπειες, ιστορικά γνωστές ως "Δεύτερος νόμος του Νεύτωνα":

Η ποσότητα καλείται ορμή. Έτσι η συνολική δύναμη που ασκείται σε ένα σωματίδιο ισούται με τον ρυθμό μεταβολής της ορμής του σωματιδίου σε σχέση με τον χρόνο. Εφόσον ο ορισμός της επιτάχυνσης είναι , ο δεύτερος νόμος του Νεύτωνα μπορεί να γραφεί στην απλοποιημένη και πιο οικεία μορφή του:

Αν η συνολική δύναμη που ασκείται σε ένα σωματίδιο είναι γνωστή, ο δεύτερος νόμος του Νεύτωνα επαρκεί για να περιγράψει την κίνηση του σωματιδίου. Εφόσον έχουμε μια σχέση για κάθε δύναμη που ασκείται σε ένα σωματίδιο, μπορούμε να αντικαταστήσουμε στον δεύτερο νόμο του Νεύτωνα και να πάρουμε μια διαφορική εξίσωση, η οποία καλείται εξίσωση της κίνησης.

Για παράδειγμα, έστω ότι η μόνη δύναμη που ασκείται στο σωματίδιο είναι η τριβή, και ότι μπορεί να γραφεί σαν συνάρτηση της ταχύτητας του σωματιδίου, για παράδειγμα:

όπου λ μια θετική σταθερά. Τότε η εξίσωση της κίνησης είναι

Αυτή μπορεί να ολοκληρωθεί για να πάρουμε

όπου είναι η αρχική ταχύτητα. Αυτό σημαίνει ότι η ταχύτητα του σωματιδίου φθίνει εκθετικά στο μηδέν καθώς κυλάει ο χρόνος. Σε αυτή την περίπτωση, μια ισοδύναμη διατύπωση είναι ότι η κινητική ενέργεια του σωματιδίου απορροφάται από την τριβή ιξώδους του ρευστού (η οποία την μετατρέπει σε θερμική ενέργεια σύμφωνα με την αρχή διατήρησης της ενέργειας), επιβραδύνοντας το. Αυτή η έκφραση μπορεί να ολοκληρωθεί περαιτέρω για να πάρουμε την θέση του σωματιδίου σε συνάρτηση με τον χρόνο.

Στις σημαντικές δυνάμεις περιλαμβάνονται η βαρυτική έλξη και η δύναμη Λόρεντζ στον ηλεκτρομαγνητισμό. Επιπρόσθετα, ο τρίτος νόμος του Νεύτωνα μπορεί να χρησιμοποιηθεί μερικές φορές για να προσδιορίσουμε δυνάμεις που ασκούνται σε ένα σωματίδιο: αν είναι γνωστό ότι το σωματίδιο ασκεί μια δύναμη σε ένα άλλο σωματίδιο , τότε το πρέπει να ασκεί μια ίση και αντίθετη "δύναμη αντίδρασης", , στο . Η ισχυρή μορφή του τρίτου νόμου του Νεύτωνα απαιτεί οτι η δύναμη και η δύναμη δρουν πάνω στην γραμμή που ενώνει τα και , ενώ η ασθενέστερη μορφή δεν απαιτεί κάτι τέτοιο. Απεικονίσεις της ασθενούς μορφή του τρίτου νόμου του Νεύτωνα συναντώνται συχνά στις μαγνητικές δυνάμεις.

Αν μια σταθερή δύναμη ασκείται σε ένα σωματίδιο και το μετατοπίζει κατά ,[note 1] το έργο που έγινε από την δύναμη ορίζεται ως το εσωτερικό γινόμενο των διανυσμάτων της δύναμης και της μετατόπισης:

Γενικότερα, αν η δύναμη μεταβάλλεται σαν μια συνάρτηση της θέσης καθώς το σωματίδιο μετακινείται από την στην σε ένα "μονοπάτι" , το έργο της δύναμης δίνεται από το γραμμικό ολοκλήρωμα

Αν το έργο που έγινε μετακινώντας το σωματίδιο από την θέση στην είναι το ίδιο, όποιο "μονοπάτι" και αν διαλέξω, τότε η δύναμη λέγεται συντηρητική. Η βαρύτητα είναι συντηρητική δύναμη, όπως και η δύναμη που οφείλεται σε ένα ιδανικό ελατήριο, όπως αυτή δίνεται από τον νόμο του Χουκ. Η δύναμη της τριβής δεν είναι συντηρητική.

Η κινητική ενέργεια ενός σωματιδίου μάζας που ταξιδεύει με ταχύτητα δίνεται από:

Για σύνθετα αντικείμενα αποτελούμενα από πολλά σωματίδια, η κινητική ενέργεια δίνεται από το άθροισμα των κινητικών ενεργειών όλων των σωματιδίων.

Το θεώρημα έργου-ενέργειας ισχυρίζεται ότι για ένα σωματίδιο με σταθερή μάζα m το συνολικό έργο που έγινε για την μετακίνηση του από την θέση στην ισούται με την μεταβολή της κινητικής ενέργειας του σωματιδίου:

Οι συντηρητικές δυνάμεις μπορούν να εκφραστούν ως το Ανάδελτα ενός βαθμωτού μεγέθους, γνωστό ως δυναμική ενέργεια που συμβολίζεται με :

Αν όλες οι δυνάμεις που δρουν σε ένα σωματίδιο είναι συντηρητικές, και είναι η συνολική δυναμική ενέργεια είναι το άθροισμα όλων των δυναμικών ενεργειών που αντιστοιχούν σε κάθε δύναμη

Αυτό το αποτέλεσμα είναι γνωστό ως διατήρηση της ενέργειας και ισχυρίζεται ότι η συνολική ενέργεια,

είναι σταθερή με τον χρόνο. Είναι συχνά χρήσιμο, επειδή πολλές από τις δυνάμεις που συναντούμε είναι συντηρητικές.

Πέρα από τους νόμους του Νεύτωνα

[Επεξεργασία | επεξεργασία κώδικα]

Η κλασική μηχανική περιλαμβάνει και περιγραφές της κίνησης σύνθετων μη-σημειακών σωμάτων. Οι νόμοι του Όιλερ επεκτείνουν τους νόμους του Νεύτωνα σε αυτή την περιοχή. Οι έννοιες της στροφορμής βασίζονται στον ίδιο λογισμό που χρησιμοποιήθηκε για να περιγράψει την μονοδιάστατη κίνηση. Η πυραυλική εξίσωση του Τσιολκόφσκι επεκτείνει την έννοια του ρυθμού μεταβολής της ορμής ενός αντικειμένου και περιλαμβάνει την περίπτωση που ένα αντικείμενο "χάνει μάζα".

Υπάρχουν δυο σημαντικές αναδιατυπώσεις της κλασικής μηχανικής: η Λαγκρανιανή μηχανική και η Χαμιλτονιανή μηχανική. Αυτές, και άλλες σύγχρονες αναδιατυπώσεις, συνήθως παρακάμπτουν την έννοια της "δύναμης", και αντί αυτής αναφέρουν άλλες φυσικές ποσότητες, όπως η ενέργεια,η ταχύτητα και η ορμή, για την περιγραφή μηχανικών συστημάτων σε γενικευμένες συντεταγμένες.

Οι εκφράσεις για την ορμή και την κινητική ενέργεια που δόθηκαν παραπάνω είναι μόνο όταν δεν υπάρχει σημαντική ηλεκτρομαγνητική συμβολή σε αυτές. Στον ηλεκτρομαγνητισμό, ο δεύτερος νόμος του Νεύτωνα για αγωγούς που μεταφέρουν ρεύμα καταρρέει εκτός και αν συμπεριληφθεί η συνεισφορά του μαγνητικού πεδίου στην ορμή του συστήματος όπως αυτή εκφράζεται από το διάνυσμα Poynting διαιρεμένο με το , όπου η ταχύτητα του φωτός στο κενό.

Τα όρια της εγκυρότητας

[Επεξεργασία | επεξεργασία κώδικα]
Τομέας εγκυρότητας για την κλασική μηχανική

Πολλοί κλάδοι της κλασικής μηχανικής είναι απλοποιήσεις ή προσεγγίσεις ακριβέστερων θεωριών; δυο από τις πιο ακριβείς είναι η γενική σχετικότητα και η σχετικιστική στατιστική μηχανική. Η γεωμετρική οπτική είναι μια προσέγγιση της κβαντικής θεωρίας του φωτός, και δεν έχει μια ανώτερη "κλασική" μορφή.

Η Νευτώνεια προσέγγιση της ειδικής σχετικότητας

[Επεξεργασία | επεξεργασία κώδικα]

Στην ειδική σχετικότητα, η ορμή ενός σωματιδίου δίνεται από

όπου m η μάζα ηρεμίας του σωματιδίου, η ταχύτητα του, και η ταχύτητα του φωτός.

Αν το είναι πολύ μικρό σε σχέση με το , τότε το είναι περίπου μηδέν, και έτσι

Συνεπώς η Νευτώνεια εξίσωση είναι μια προσέγγιση της σχετικιστικής εξίσωσης για σώματα που κινούνται με μικρές ,σε σχέση με αυτήν του φωτός, ταχύτητες .

Για παράδειγμα, η σχετικιστική συχνότητα ενός κύκλοτρου, γύροτρου, ή υψηλής τάσης μάγνητρο δίνεται από όπου fc είναι η κλασική συχνότητα ενός ηλεκτρονίου (ή άλλου φορτισμένου σωματιδίου) με κινητική ενέργεια και μάζα που κάνει κύκλους σε ένα μαγνητικό πεδίο. Η μάζα ενός ηλεκτρονίου είναι . Άρα η διόρθωση της συχνότητας είναι για έναν μαγνητικό σωλήνα κενού με συνεχές ρεύμα επιταχυνόμενης τάσης.

Η κλασική προσέγγιση της κβαντικής μηχανικής

[Επεξεργασία | επεξεργασία κώδικα]

Η κλασική μηχανική καταρρέει όταν το μήκος κύματος de Broglie δεν είναι πολύ μικρό σε σχέση με άλλα μεγέθη του συστήματος. Για τα μη-σχετικιστικά σωματίδια αυτό το μήκος κύματος ισούται με

όπου είναι η σταθερά του Πλάνκ και είναι η ορμή.

Αυτό συμβαίνει με ηλεκτρόνια πριν συμβεί με βαρύτερα σωματίδια. Για παράδειγμα, τα ηλεκτρόνια που χρησιμοποιήθηκαν από τον Clinton Davisson και τον Lester Germer το 1927, επιταχύνθηκαν από volts, είχαν μήκος κύματος , το οποίο ήταν αρκετά μεγάλο για να προκαλέσει περίθλαση side lobe όταν ανακλάστηκε από την πρόσοψη ενός κρυστάλλου νικελίου με ατομικό κενό . Με έναν μεγαλύτερο θάλαμο κενού, θα ήταν σχετικά εύκολο να αυξήσουμε την γωνιακή ανάλυση από ένα radian σε ένα milliradian και να δούμε την κβαντική περίθλαση από τα περιοδικά πρότυπα ενός μικροτσίπ μνήμης υπολογιστή.

Κλάδοι της μηχανικής

Η κλασική μηχανική χωρίζεται παραδοσιακά σε τρεις κύριους κλάδους:

  • Στατική, η μελέτη της ισορροπίας και της σχέσης της με τις δυνάμεις
  • Δυναμική, η μελέτη της κίνησης και της σχέσης της με τις δυνάμεις.
  • Κινητική, η οποία ασχολείται με τις επιπτώσεις των παρατηρούμενων κινήσεων χωρίς να νοιάζεται για το τι τις προκαλεί

Άλλος διαχωρισμός γίνεται με βάση τον μαθηματικό φορμαλισμό :

Εναλλακτικά, ένας διαχωρισμός μπορεί να γίνει ανάλογα με το πεδίο εφαρμογής:

  1. Η μετατόπιση Δr είναι η διαφορά της αρχικής και τελικη΄ς θέσης του σωματιδίου: Δr = rτελrαρχ.
  1. Page 2-10 of the Feynman Lectures on Physics says "For already in classical mechanics there was indeterminability from a practical point of view." The past tense here implies that classical physics is no longer fundamental.
  2. Complex Elliptic Pendulum, Carl M. Bender, Daniel W. Hook, Karta Kooner
  3. MIT physics 8.01 lecture notes (page 12) Αρχειοθετήθηκε 2013-07-09 στο Library of Congress (PDF)
  • Richard Feynman (1996). Six Easy Pieces. Perseus Publishing. ISBN 0-201-40825-2. 
  • Richard Feynman· Richard Phillips (1998). Six Easy Pieces. Perseus Publishing. ISBN 0-201-32841-0. 
  • Richard Feynman (1999). Lectures on Physics. Perseus Publishing. ISBN 0-7382-0092-1. 
  • L.D. Landau· E.M. Lifshitz (1972). Mechanics Course of Theoretical Physics, Vol. 1. Franklin Book Company. ISBN 0-08-016739-X. 
  • Robert Martin Eisberg (1961). Fundamentals of Modern Physics. John Wiley and Sons. 
  • M. Alonso· J. Finn. Fundamental university physics. Addison-Wesley. 
  • Gerald Jay Sussman· Jack Wisdom (2001). Structure and Interpretation of Classical Mechanics. MIT Press. ISBN 0-262-19455-4. 
  • D. Kleppner· R.J. Kolenkow (1973). An Introduction to MechanicsΑπαιτείται δωρεάν εγγραφή. McGraw-Hill. ISBN 0-07-035048-5. 
  • Herbert Goldstein· Charles P. Poole· John L. Safko (2002). Classical Mechanics (3η έκδοση). Addison Wesley. ISBN 0-201-65702-3. 
  • Stephen T. Thornton· Jerry B. Marion (2003). Classical Dynamics of Particles and Systems (5η έκδοση). Brooks Cole. ISBN 0-534-40896-6. 
  • Tom W. B. Kibble· Frank H. Berkshire (2004). Classical Mechanics (5η έκδοση). Imperial College Press. ISBN 978-1-86094-424-6. 
  • David Morin (2008). Introduction to Classical Mechanics: With Problems and SolutionsΑπαιτείται δωρεάν εγγραφή (1η έκδοση). Cambridge, UK: Cambridge University Press. ISBN 978-0-521-87622-3. 

Εξωτερικοί σύνδεσμοι

[Επεξεργασία | επεξεργασία κώδικα]