Στρόντιο: Διαφορά μεταξύ των αναθεωρήσεων

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Περιεχόμενο που διαγράφηκε Περιεχόμενο που προστέθηκε
Created by translating the section "History" from the page "Strontium"
Ετικέτες: Επεξεργασία από κινητό Διαδικτυακή επεξεργασία από κινητό Προχωρημένη επεξεργασία από κινητό ΜετάφρασηΠεριεχόμενου ΜετάφρασηΕνότητας
Created by translating the section "Occurrence" from the page "Strontium"
Ετικέτες: Επεξεργασία από κινητό Διαδικτυακή επεξεργασία από κινητό Προχωρημένη επεξεργασία από κινητό ΜετάφρασηΠεριεχόμενου ΜετάφρασηΕνότητας
Γραμμή 85: Γραμμή 85:


Κατά τη διάρκεια [[Δοκιμή πυρηνικών όπλων|δοκιμών ατμοσφαιρικών πυρηνικών όπλων]], παρατηρήθηκε ότι το στρόντιο-90 είναι ένα από τα προϊόντα πυρηνικής σχάσης με σχετικά υψηλή απόδοση. Η ομοιότητα με το ασβέστιο και η πιθανότητα εμπλουτισμού του στροντίου-90 στα οστά έκανε την έρευνα για τον μεταβολισμό του στροντίου ένα σημαντικό θέμα. <ref>{{Cite web|url=http://www-nds.iaea.org/sgnucdat/c1.htm|title=Chain Fission Yields|publisher=iaea.org}}<cite class="citation web cs1" data-ve-ignore="true">[http://www-nds.iaea.org/sgnucdat/c1.htm "Chain Fission Yields"]. iaea.org.</cite></ref> <ref>{{Cite journal|pmc=1985251|date=1968|last=Nordin|first=B. E.|title=Strontium Comes of Age|volume=1|issue=5591|page=566|journal=British Medical Journal|doi=10.1136/bmj.1.5591.566}}<cite class="citation journal cs1" data-ve-ignore="true" id="CITEREFNordin1968">Nordin, B. E. (1968). </cite></ref>
Κατά τη διάρκεια [[Δοκιμή πυρηνικών όπλων|δοκιμών ατμοσφαιρικών πυρηνικών όπλων]], παρατηρήθηκε ότι το στρόντιο-90 είναι ένα από τα προϊόντα πυρηνικής σχάσης με σχετικά υψηλή απόδοση. Η ομοιότητα με το ασβέστιο και η πιθανότητα εμπλουτισμού του στροντίου-90 στα οστά έκανε την έρευνα για τον μεταβολισμό του στροντίου ένα σημαντικό θέμα. <ref>{{Cite web|url=http://www-nds.iaea.org/sgnucdat/c1.htm|title=Chain Fission Yields|publisher=iaea.org}}<cite class="citation web cs1" data-ve-ignore="true">[http://www-nds.iaea.org/sgnucdat/c1.htm "Chain Fission Yields"]. iaea.org.</cite></ref> <ref>{{Cite journal|pmc=1985251|date=1968|last=Nordin|first=B. E.|title=Strontium Comes of Age|volume=1|issue=5591|page=566|journal=British Medical Journal|doi=10.1136/bmj.1.5591.566}}<cite class="citation journal cs1" data-ve-ignore="true" id="CITEREFNordin1968">Nordin, B. E. (1968). </cite></ref>
== Εμφάνιση ==
[[File:Celestine_Poland.jpg|μικρογραφία|Το ορυκτό σελεστίνης (SrSO<sub>4</sub>)]]
{{Category see also|Ορυκτά του στροντίου}}Το στρόντιο εμφανίζεται συνήθως στη φύση, είναι το 15ο πιο άφθονο στοιχείο στη Γη (το βαρύτερο συγγενικό του [[βάριο]] είναι το 14ο), που υπολογίζεται κατά μέσο όρο σε περίπου 360&nbsp;μέρη ανά εκατομμύριο στον φλοιό της Γης <ref>{{Cite journal|last=Turekian|first=K. K.|last2=Wedepohl|first2=K. H.|title=Distribution of the elements in some major units of the Earth's crust|journal=Geological Society of America Bulletin|volume=72|issue=2|pages=175–92|doi=10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2|bibcode=1961GSAB...72..175T|year=1961}}</ref> και βρίσκεται κυρίως ως το θειικό [[ορυκτό]] [[Σελεστίνης|κελεστίνη]] (SrSO<sub>4</sub>) και ο [[Ανθρακικό άλας|ανθρακικός]] στροντιανίτης (SrCO<sub>3</sub>). Από τα δύο, ο [[σελεστίνης]] εμφανίζεται πολύ πιο συχνά σε κοιτάσματα επαρκούς μεγέθους για εξόρυξη. Επειδή το στρόντιο χρησιμοποιείται συχνότερα σε ανθρακική μορφή, ο στροντιανίτης θα ήταν το πιο χρήσιμος από τα δύο κοινά ορυκτά, αλλά λίγα κοιτάσματα έχουν ανακαλυφθεί που είναι κατάλληλα για ανάπτυξη. <ref name="usgs10">{{Cite web|url=http://minerals.usgs.gov/minerals/pubs/commodity/strontium/mcs-2010-stron.pdf|title=Mineral Commodity Summaries 2010: Strontium|last=Ober|first=Joyce A.|publisher=United States Geological Survey|accessdate=14 May 2010}}</ref> Λόγω του τρόπου με τον οποίο αντιδρά με τον αέρα και το νερό, το στρόντιο υπάρχει στη φύση, μόνο όταν συνδυάζεται για να σχηματίσει μέταλλα. Το στρόντιο που απαντάται στη φύση είναι σταθερό, αλλά το συνθετικό του ισότοπο <sup>90</sup>Sr παράγεται μόνο από πυρηνική πτώση.

Στα υπόγεια ύδατα το στρόντιο συμπεριφέρεται χημικά όπως το ασβέστιο. Σε ενδιάμεσο έως όξινο [[pH]] το κατιόν Sr<sup>2+</sup> είναι το κυρίαρχο είδος στροντίου. Με την παρουσία ιόντων ασβεστίου, το στρόντιο συνήθως σχηματίζει συγκαταβύθιση με μέταλλα ασβεστίου όπως ο [[ασβεστίτης]] και ο ανυδρίτης σε αυξημένο pH. Σε ενδιάμεσο έως όξινο pH, το διαλυμένο στρόντιο συνδέεται με τα σωματίδια του εδάφους μέσω ανταλλαγής κατιόντων. <ref name="Heuel-Fabianek">{{Cite journal|journal=Berichte des Forschungszentrums Jülich|volume=4375|date=2014|last=Heuel-Fabianek, B.|title=Partition Coefficients (Kd) for the Modelling of Transport Processes of Radionuclides in Groundwater|url=http://juser.fz-juelich.de/record/154001/files/FZJ-2014-03430.pdf|issn=0944-2952}}</ref>

Η μέση περιεκτικότητα σε στρόντιο στο νερό των ωκεανών είναι 8 mg/L. <ref>{{Cite book|title=Artesian water in Tertiary limestone in the southeastern States|last=Stringfield, V. T.|publisher=United States Government Printing Office|date=1966|chapter=Strontium|series=Geological Survey Professional Paper|pages=138–39}}</ref> <ref>{{Cite journal|doi=10.1016/0009-2541(66)90013-1|title=Observed variations in the strontium concentration of sea water|date=1966|last=Angino|first=Ernest E.|last2=Billings|first2=Gale K.|last3=Andersen|first3=Neil|journal=Chemical Geology|volume=1|page=145|bibcode=1966ChGeo...1..145A}}</ref> Σε συγκέντρωση μεταξύ 82 και 90 μmol/L στροντίου, η συγκέντρωση είναι σημαντικά χαμηλότερη από τη συγκέντρωση ασβεστίου, η οποία είναι συνήθως μεταξύ 9,6 και 11,6 mmol/L. <ref>{{Cite journal|doi=10.1007/s00338-004-0467-x|title=Influence of seawater Sr content on coral Sr/Ca and Sr thermometry|date=2005|last=Sun|first=Y.|last2=Sun|first2=M.|last3=Lee|first3=T.|last4=Nie|first4=B.|journal=Coral Reefs|volume=24|page=23}}</ref> <ref>{{Cite book|title=Industrial Minerals & Rocks: Commodities, Markets, and Uses|first=Jessica Elzea|last=Kogel|first2=Nikhil C.|last2=Trivedi|isbn=978-0-87335-233-8|date=5 March 2006|url=https://books.google.com/books?id=zNicdkuulE4C&pg=PA928}}</ref> Ωστόσο, είναι πολύ υψηλότερο από αυτό του βαρίου, 13 μg/L.
== Παραπομπές ==
== Παραπομπές ==
{{Παραπομπές}}
{{Παραπομπές}}

Έκδοση από την 18:25, 15 Νοεμβρίου 2022

Το «Sr» ανακατευθύνει εδώ. Για άλλες χρήσεις, δείτε: SR.
Στρόντιο
ΡουβίδιοΣτρόντιοΎττριο
Ασβέστιο

Sr

Βάριο



Ιστορία
Ταυτότητα του στοιχείου
Όνομα, σύμβολο Στρόντιο (Sr)
Ατομικός αριθμός (Ζ) 38
Κατηγορία Μέταλλα
ομάδα, περίοδος,
τομέας
Αλκαλικές γαίες ,5, s
Σχετική ατομική
μάζα (Ar)
87.62
Ηλεκτρονική
διαμόρφωση
[ Kr ] 5s2
Ατομικές ιδιότητες
Ατομική ακτίνα 215 pm
Ηλεκτραρνητικότητα 1,00
Κυριότεροι αριθμοί
οξείδωσης
+2
Φυσικά χαρακτηριστικά
Σημείο τήξης 1050 K,  777 °C
Σημείο βρασμού 1655 K,  1382 °C
Μαγνητική συμπεριφορά Παραγμανιτισμός
Σκληρότητα Mohs 1,5
Η κατάσταση αναφοράς είναι η πρότυπη κατάσταση (25°C, 1 Atm)
εκτός αν σημειώνεται διαφορετικά

Το στρόντιο είναι ένα χημικό στοιχείο με χημικό σύμβολο Sr και ατομικό αριθμό 38. Ως ένα μέταλλο αλκαλικής γαίας, το στρόντιο είναι ένα μαλακό ασημί-λευκό κιτρινωπό μεταλλικό στοιχείο, όπου, χημικά, είναι εξαιρετικά αντιδραστικό.Το μέταλλο σχηματίζει ένα σκούρο στρώμα οξειδίου, όταν εκτεθεί στον αέρα. Το στρόντιο έχει φυσικές και χημικές ιδιότητες παρόμοιες με αυτές των δύο κάθετων γειτόνων του στον περιοδικό πίνακα, του ασβεστίου και του βαρίου. Εμφανίζεται φυσικά κυρίως στα ορυκτά σελεστίνη και στροντιανίτη, και εξορύσσεται κυρίως από αυτά.

Τόσο το στρόντιο όσο και ο στροντιανίτης έχουν πάρει το όνομά τους από το Strontian, ένα χωριό στη Σκωτία κοντά στο οποίο το ορυκτό ανακαλύφθηκε το 1790 από τους Adair Crawford και William Cruickshank. Αναγνωρίστηκε ως νέο στοιχείο τον επόμενο χρόνο, από το κατακόκκινο χρώμα της φλόγας. Το στρόντιο απομονώθηκε για πρώτη φορά ως μέταλλο το 1808 από τον Humphry Davy, χρησιμοποιώντας την τότε πρόσφατα ανακαλυφθείσα διαδικασία της ηλεκτρόλυσης. Κατά τον 19ο αιώνα, το στρόντιο χρησιμοποιήθηκε κυρίως για την παραγωγή ζάχαρης από ζαχαρότευτλα. Στο αποκορύφωμα της παραγωγής τηλεοπτικών σωλήνων καθοδικών ακτίνων, έως και το 75% της κατανάλωσης στροντίου στις Ηνωμένες Πολιτείες χρησιμοποιήθηκε για το γυαλί πρόσοψης.[1] Με την αντικατάσταση των καθοδικών λυχνιών με άλλες μεθόδους απεικόνισης, η κατανάλωση στροντίου έχει μειωθεί δραματικά. [1]

Ενώ το φυσικό στρόντιο (το οποίο είναι ως επί το πλείστον το ισότοπο στρόντιο-88) είναι σταθερό, το συνθετικό στρόντιο-90 είναι ραδιενεργό και είναι ένα από τα πιο επικίνδυνα συστατικά της πυρηνικής πτώσης, καθώς το στρόντιο απορροφάται από τον οργανισμό με παρόμοιο τρόπο με το ασβέστιο. Αντιθέτως, το φυσικό σταθερό στρόντιο δεν είναι επικίνδυνο για την υγεία.

Χαρακτηριστικά

Το στρόντιο είναι ένα δισθενές αργυρόχρωμο μέταλλο με ωχροκίτρινη απόχρωση, του οποίου οι ιδιότητες είναι ως επί το πλείστον ενδιάμεσες και παρόμοιες με εκείνες της ομάδας γειτονικών του ασβεστίου και βαρίου. [2] Είναι πιο μαλακό από το ασβέστιο και πιο σκληρό από το βάριο. Οι βαθμοί τήξης και βρασμού (777°C και 1377°C αντίστοιχα) είναι χαμηλότεροι από εκείνους του ασβεστίου (842°C και 1484°C αντίστοιχα). Το βάριο συνεχίζει αυτή την πτωτική τάση στο σημείο τήξης (727°C), αλλά όχι στο σημείο βρασμού (1900°C). Η πυκνότητα του στροντίου (2,64g/cm3) είναι ομοίως ενδιάμεσο μεταξύ εκείνων του ασβεστίου (1,54g/cm3) και βάριο (3.594g/cm3). Υπάρχουν τρία αλλότροπα μεταλλικού στροντίου, με σημεία μετάβασης στους 235°C και 540°C. [3]

Το τυπικό δυναμικό ηλεκτροδίου για το ζεύγος Sr2+/Sr είναι −2,89V, περίπου στη μέση μεταξύ εκείνων του Ca2+/Ca (−2,84V) και Ba2+/Ba (−2,92V) ζευγάρια και κοντά σε αυτά των γειτονικών αλκαλιμετάλλων. [4] Το στρόντιο είναι ενδιάμεσο μεταξύ ασβεστίου και βαρίου ως προς την αντιδραστικότητα του προς το νερό, με το οποίο αντιδρά κατά την επαφή για να παράγει υδροξείδιο του στροντίου και αέριο υδρογόνο. Το μέταλλο στροντίου καίγεται στον αέρα και παράγει τόσο οξείδιο του στροντίου όσο και νιτρίδιο του στροντίου, αλλά επειδή δεν αντιδρά με άζωτο κάτω από τους 380°C, σε θερμοκρασία δωματίου σχηματίζει μόνο το οξείδιο αυθόρμητα. Εκτός από το απλό οξείδιο SrO, το υπεροξείδιο SrO2 μπορεί να παραχθεί με άμεση οξείδωση μετάλλου στροντίου υπό υψηλή πίεση οξυγόνου και υπάρχουν κάποιες ενδείξεις για ένα κίτρινο υπεροξείδιο Sr(O2)2. [5] Το υδροξείδιο του στροντίου, Sr(OH)2, είναι μια ισχυρή βάση, αν και δεν είναι τόσο ισχυρή όσο τα υδροξείδια του βαρίου ή των αλκαλικών μετάλλων. [6] Και τα τέσσερα διαλογονίδια του στροντίου είναι γνωστά. [7]

Λόγω του μεγάλου μεγέθους των βαρέων στοιχείων s-block, συμπεριλαμβανομένου του στροντίου, είναι γνωστό ένα τεράστιο εύρος αριθμών συντονισμού, από 2, 3 ή 4 μέχρι το 22 ή το 24 στο SrCd11 και το SrZn13. Το ιόν Sr2+ είναι αρκετά μεγάλο, έτσι ώστε οι υψηλοί αριθμοί συντονισμού είναι ο κανόνας. [8] Το μεγάλο μέγεθος του στροντίου και του βαρίου παίζει σημαντικό ρόλο στη σταθεροποίηση των συμπλεγμάτων στροντίου με πολυοδοντικούς μακροκυκλικούς υποκαταστάτες όπως οι αιθέρες κορώνας: για παράδειγμα, ενώ το 18-crown-6 σχηματίζει σχετικά ασθενή σύμπλοκα με το ασβέστιο και τα αλκαλικά μέταλλα, τα σύμπλοκα στροντίου και βαρίου είναι πολύ πιο δυνατό. [9]

Οι ενώσεις οργανοστροντίου περιέχουν έναν ή περισσότερους δεσμούς στροντίου-άνθρακα. Έχουν αναφερθεί ως ενδιάμεσα σε αντιδράσεις τύπου Barbier. [10] [11] [12] Αν και το στρόντιο ανήκει στην ίδια ομάδα με το μαγνήσιο και οι οργανομαγνήσιες ενώσεις χρησιμοποιούνται πολύ συχνά σε όλη τη χημεία, οι ενώσεις οργανοστροντίου δεν είναι εξίσου διαδεδομένες επειδή είναι πιο δύσκολο να κατασκευαστούν και πιο αντιδραστικές. Οι ενώσεις οργανοστροντίου τείνουν να μοιάζουν περισσότερο με τις οργανικές ενώσεις του ευρωπίου ή οργανικού σαμαριού λόγω των παρόμοιων ιοντικών ακτίνων αυτών των στοιχείων (Sr2+ 118 pm, Eu2+ 117 pm και Sm2+ 122 pm). Οι περισσότερες από αυτές τις ενώσεις μπορούν να παρασκευαστούν μόνο σε χαμηλές θερμοκρασίες. Οι ογκώδεις συνδέτες τείνουν να ευνοούν τη σταθερότητα. Για παράδειγμα, το δικυκλοπενταδιενύλιο στρόντιο, Sr(C5H5)2, πρέπει να παρασκευάζεται με άμεση αντίδραση μετάλλου στροντίου με το υδροκένιο ή το ίδιο το κυκλοπενταδιένιο. Η αντικατάσταση του συνδέτη C5H5 με τον πιο ογκώδη συνδέτη C5(CH3)5 από την άλλη πλευρά αυξάνει τη διαλυτότητα, την πτητότητα και την κινητική σταθερότητα της ένωσης. [13]

Λόγω της εξαιρετικής αντιδραστικότητάς του με το οξυγόνο και το νερό, το στρόντιο εμφανίζεται φυσικά μόνο σε ενώσεις με άλλα στοιχεία, όπως στα ορυκτά στροντιανίτη και σελεστίνη. Διατηρείται κάτω από υγρό υδρογονάνθρακα όπως ορυκτέλαιο ή κηροζίνη για να αποφευχθεί η οξείδωση. Το πρόσφατα εκτεθειμένο μέταλλο στρόντιο παίρνει γρήγορα ένα κιτρινωπό χρώμα με το σχηματισμό του οξειδίου. Το λεπτόκοκκο μέταλλο στρόντιο είναι πυροφορικό, που σημαίνει ότι θα αναφλεγεί αυθόρμητα στον αέρα σε θερμοκρασία δωματίου. Τα πτητικά άλατα στροντίου προσδίδουν ένα έντονο κόκκινο χρώμα στις φλόγες και αυτά τα άλατα χρησιμοποιούνται στην πυροτεχνία και στην παραγωγή φωτοβολίδων. Όπως το ασβέστιο και το βάριο, καθώς και τα αλκαλιμέταλλα και οι δισθενείς λανθανίδες ευρώπιο και υττέρβιο, το μέταλλο στρόντιο διαλύεται απευθείας σε υγρή αμμωνία για να δώσει ένα σκούρο μπλε διάλυμα διαλυτωμένων ηλεκτρονίων. [2]

Ισότοπα

Το φυσικό στρόντιο είναι ένα μείγμα τεσσάρων σταθερών ισοτόπων: 84Sr, 86Sr, 87Sr και 88Sr. Η αφθονία τους αυξάνεται με τον αυξανόμενο αριθμό μάζας και το βαρύτερο, το 88Sr, αποτελεί περίπου το 82,6% όλου του φυσικού στροντίου, αν και η αφθονία ποικίλλει λόγω της παραγωγής του ραδιογενούς 87Sr ως θυγατρικό ισότοπο του μακρόβιου βήτα-διάσπασης 87Rb. [14] Αυτή είναι η βάση της χρονολόγησης ρουβιδίου-στροντίου. Από τα ασταθή ισότοπα, ο κύριος τρόπος διάσπασης των ισοτόπων ελαφρύτερων από 85Sr είναι η σύλληψη ηλεκτρονίων ή η εκπομπή ποζιτρονίων στα ισότοπα του ρουβιδίου και αυτός των ισοτόπων βαρύτερων από 88Sr είναι η εκπομπή ηλεκτρονίων σε ισότοπα υττρίου. Ιδιαίτερης σημασίας είναι τα 89Sr και 90Sr. Το πρώτο έχει χρόνο ημιζωής 50,6 ημέρες και χρησιμοποιείται για τη θεραπεία του καρκίνου των οστών λόγω της χημικής ομοιότητας του στροντίου και ως εκ τούτου της ικανότητας να αντικαθιστά το ασβέστιο. [15] [16] Ενώ είναι 90Sr (χρόνος ημιζωής 28,90 χρόνια) έχει χρησιμοποιηθεί με παρόμοιο τρόπο, είναι επίσης ένα ισότοπο ανησυχίας σε επιπτώσεις από πυρηνικά όπλα και πυρηνικά ατυχήματα λόγω της παραγωγής του ως προϊόν σχάσης. Η παρουσία του στα οστά μπορεί να προκαλέσει καρκίνο των οστών, καρκίνο των κοντινών ιστών και λευχαιμία. [17] Το πυρηνικό ατύχημα του Τσερνόμπιλ το 1986 μόλυναν περίπου 30.000km2 με μεγαλύτερο από 10kBq/m2 με 90Sr, που αντιπροσωπεύει περίπου το 5% των 90Sr που ήταν στον πυρήνα του αντιδραστήρα. [18]

Ιστορία

Δοκιμή φλόγας για στρόντιο

Το στρόντιο πήρε το όνομά του από το σκωτσέζικο χωριό Strontian (Gaelic Sròn an t-Sìthein), όπου ανακαλύφθηκε στα μεταλλεύματα των ορυχείων μολύβδου. [19]

Το 1790, ο Adair Crawford, ένας γιατρός που ασχολήθηκε με την παρασκευή βαρίου, και ο συνάδελφός του William Cruickshank, αναγνώρισαν ότι τα μεταλλεύματα του στροντίου παρουσίαζαν ιδιότητες που διέφεραν από εκείνες σε άλλες πηγές «βαριών σπάρων». [20] Ο γιατρός και συλλέκτης ορυκτών Friedrich Gabriel Sulzer ανέλυσε μαζί με τον Johann Friedrich Blumenbach το ορυκτό από το Strontian και το ονόμασε στροντιανίτη. Το 1793 ο Thomas Charles Hope, καθηγητής χημείας στο Πανεπιστήμιο της Γλασκώβης μελέτησε το ορυκτό [21] [22] και πρότεινε το όνομα strontites. [23] [24] [25] Το στοιχείο τελικά απομονώθηκε από τον Sir Humphry Davy το 1808 με την ηλεκτρόλυση ενός μείγματος που περιείχε χλωριούχο στρόντιο και οξείδιο του υδραργύρου, και ανακοινώθηκε από αυτόν σε μια διάλεξη στη Βασιλική Εταιρεία στις 30 Ιουνίου 1808. [26] Σύμφωνα με την ονομασία των άλλων αλκαλικών γαιών, άλλαξε το όνομα σε στρόντιο. [27] [28] [29] [30] [31]

Η πρώτη μεγάλης κλίμακας εφαρμογή του στροντίου ήταν στην παραγωγή ζάχαρης από ζαχαρότευτλα. Αν και μια διαδικασία κρυστάλλωσης με χρήση υδροξειδίου του στροντίου κατοχυρώθηκε με δίπλωμα ευρεσιτεχνίας από τον Augustin-Pierre Dubrunfaut το 1849 [32] η εισαγωγή σε μεγάλη κλίμακα ήρθε με τη βελτίωση της διαδικασίας στις αρχές της δεκαετίας του 1870. Η γερμανική βιομηχανία ζάχαρης χρησιμοποίησε τη διαδικασία μέχρι τον 20ο αιώνα. Πριν από Α΄ Παγκοσμίου Πολέμου, η βιομηχανία ζάχαρης τεύτλων χρησιμοποιούσε 100.000 έως 150.000 τόνους υδροξειδίου του στροντίου για αυτή τη διαδικασία ετησίως. [33] Το υδροξείδιο του στροντίου ανακυκλώθηκε στη διαδικασία, αλλά η ζήτηση για αντικατάσταση των απωλειών κατά την παραγωγή ήταν αρκετά υψηλή ώστε να δημιουργηθεί σημαντική ζήτηση, που ξεκίνησε την εξόρυξη στροντιανίτη στο Münsterland. Η εξόρυξη στροντιανίτη στη Γερμανία τελείωσε όταν ξεκίνησε η εξόρυξη των κοιτασμάτων σελεστίνης στο Gloucestershire. [34] Αυτά τα ορυχεία παρείχαν το μεγαλύτερο μέρος της παγκόσμιας προμήθειας στροντίου από το 1884 έως το 1941. Αν και τα κοιτάσματα ουρανού στη λεκάνη της Γρανάδας ήταν γνωστά για κάποιο χρονικό διάστημα, η εξόρυξη μεγάλης κλίμακας δεν ξεκίνησε πριν από τη δεκαετία του 1950. [35]

Κατά τη διάρκεια δοκιμών ατμοσφαιρικών πυρηνικών όπλων, παρατηρήθηκε ότι το στρόντιο-90 είναι ένα από τα προϊόντα πυρηνικής σχάσης με σχετικά υψηλή απόδοση. Η ομοιότητα με το ασβέστιο και η πιθανότητα εμπλουτισμού του στροντίου-90 στα οστά έκανε την έρευνα για τον μεταβολισμό του στροντίου ένα σημαντικό θέμα. [36] [37]

Εμφάνιση

Το ορυκτό σελεστίνης (SrSO4)

Το στρόντιο εμφανίζεται συνήθως στη φύση, είναι το 15ο πιο άφθονο στοιχείο στη Γη (το βαρύτερο συγγενικό του βάριο είναι το 14ο), που υπολογίζεται κατά μέσο όρο σε περίπου 360 μέρη ανά εκατομμύριο στον φλοιό της Γης [38] και βρίσκεται κυρίως ως το θειικό ορυκτό κελεστίνη (SrSO4) και ο ανθρακικός στροντιανίτης (SrCO3). Από τα δύο, ο σελεστίνης εμφανίζεται πολύ πιο συχνά σε κοιτάσματα επαρκούς μεγέθους για εξόρυξη. Επειδή το στρόντιο χρησιμοποιείται συχνότερα σε ανθρακική μορφή, ο στροντιανίτης θα ήταν το πιο χρήσιμος από τα δύο κοινά ορυκτά, αλλά λίγα κοιτάσματα έχουν ανακαλυφθεί που είναι κατάλληλα για ανάπτυξη. [39] Λόγω του τρόπου με τον οποίο αντιδρά με τον αέρα και το νερό, το στρόντιο υπάρχει στη φύση, μόνο όταν συνδυάζεται για να σχηματίσει μέταλλα. Το στρόντιο που απαντάται στη φύση είναι σταθερό, αλλά το συνθετικό του ισότοπο 90Sr παράγεται μόνο από πυρηνική πτώση.

Στα υπόγεια ύδατα το στρόντιο συμπεριφέρεται χημικά όπως το ασβέστιο. Σε ενδιάμεσο έως όξινο pH το κατιόν Sr2+ είναι το κυρίαρχο είδος στροντίου. Με την παρουσία ιόντων ασβεστίου, το στρόντιο συνήθως σχηματίζει συγκαταβύθιση με μέταλλα ασβεστίου όπως ο ασβεστίτης και ο ανυδρίτης σε αυξημένο pH. Σε ενδιάμεσο έως όξινο pH, το διαλυμένο στρόντιο συνδέεται με τα σωματίδια του εδάφους μέσω ανταλλαγής κατιόντων. [40]

Η μέση περιεκτικότητα σε στρόντιο στο νερό των ωκεανών είναι 8 mg/L. [41] [42] Σε συγκέντρωση μεταξύ 82 και 90 μmol/L στροντίου, η συγκέντρωση είναι σημαντικά χαμηλότερη από τη συγκέντρωση ασβεστίου, η οποία είναι συνήθως μεταξύ 9,6 και 11,6 mmol/L. [43] [44] Ωστόσο, είναι πολύ υψηλότερο από αυτό του βαρίου, 13 μg/L.

Παραπομπές

  1. 1,0 1,1 «Mineral Resource of the Month: Strontium». U.S. Geological Survey. 8 Δεκεμβρίου 2014. http://www.earthmagazine.org/article/mineral-resource-month-strontium. 
  2. 2,0 2,1 Greenwood and Earnshaw, pp. 112–13
  3. Ropp, Richard C. (31 Δεκεμβρίου 2012). Encyclopedia of the Alkaline Earth Compounds. σελ. 16. ISBN 978-0-444-59553-9. 
  4. Greenwood and Earnshaw, p. 111
  5. Greenwood and Earnshaw, p. 119
  6. Greenwood and Earnshaw, p. 121
  7. Greenwood and Earnshaw, p. 117
  8. Greenwood and Earnshaw, p. 115
  9. Greenwood and Earnshaw, p. 124
  10. Miyoshi, N.; Kamiura, K.; Oka, H.; Kita, A.; Kuwata, R.; Ikehara, D.; Wada, M. (2004). «The Barbier-Type Alkylation of Aldehydes with Alkyl Halides in the Presence of Metallic Strontium». Bulletin of the Chemical Society of Japan 77 (2): 341. doi:10.1246/bcsj.77.341. 
  11. Miyoshi, N.; Ikehara, D.; Kohno, T.; Matsui, A.; Wada, M. (2005). «The Chemistry of Alkylstrontium Halide Analogues: Barbier-type Alkylation of Imines with Alkyl Halides». Chemistry Letters 34 (6): 760. doi:10.1246/cl.2005.760. 
  12. Miyoshi, N.; Matsuo, T.; Wada, M. (2005). «The Chemistry of Alkylstrontium Halide Analogues, Part 2: Barbier-Type Dialkylation of Esters with Alkyl Halides». European Journal of Organic Chemistry 2005 (20): 4253. doi:10.1002/ejoc.200500484. 
  13. Greenwood and Earnshaw, pp. 136–37
  14. Greenwood and Earnshaw, p. 19
  15. Halperin, Edward C.· Perez, Carlos A. (2008). Perez and Brady's principles and practice of radiation oncology. Lippincott Williams & Wilkins. σελίδες 1997–. ISBN 978-0-7817-6369-1. Ανακτήθηκε στις 19 Ιουλίου 2011. 
  16. Bauman, Glenn; Charette, Manya; Reid, Robert; Sathya, Jinka (2005). «Radiopharmaceuticals for the palliation of painful bone metastases – a systematic review». Radiotherapy and Oncology 75 (3): 258.E1–258.E13. doi:10.1016/j.radonc.2005.03.003. PMID 16299924. 
  17. «Strontium | Radiation Protection | US EPA». EPA. 24 Απριλίου 2012. Ανακτήθηκε στις 18 Ιουνίου 2012. 
  18. «Chernobyl: Assessment of Radiological and Health Impact, 2002 update; Chapter I – The site and accident sequence» (PDF). OECD-NEA. 2002. Ανακτήθηκε στις 3 Ιουνίου 2015. 
  19. Murray, W. H. (1977). The Companion Guide to the West Highlands of Scotland. London: Collins. ISBN 978-0-00-211135-5. 
  20. Crawford, Adair (1790). «On the medicinal properties of the muriated barytes». Medical Communications 2: 301–59. https://books.google.com/books?id=bHI_AAAAcAAJ&pg=P301. 
  21. «Thomas Charles Hope, MD, FRSE, FRS (1766-1844) - School of Chemistry». www.chem.ed.ac.uk. 
  22. Doyle, W.P. «Thomas Charles Hope, MD, FRSE, FRS (1766–1844)». The University of Edinburgh. Αρχειοθετήθηκε από το πρωτότυπο στις 2 Ιουνίου 2013. 
  23. Although Thomas C. Hope had investigated strontium ores since 1791, his research was published in: Hope, Thomas Charles (1798). «Account of a mineral from Strontian and of a particular species of earth which it contains». Transactions of the Royal Society of Edinburgh 4 (2): 3–39. doi:10.1017/S0080456800030726. https://books.google.com/books?id=5TEeAQAAMAAJ&pg=RA1-PA3. 
  24. Murray, T. (1993). «Elementary Scots: The Discovery of Strontium». Scottish Medical Journal 38 (6): 188–89. doi:10.1177/003693309303800611. PMID 8146640. 
  25. Hope, Thomas Charles (1794). «Account of a mineral from Strontian and of a particular species of earth which it contains». Transactions of the Royal Society of Edinburgh 3 (2): 141–49. doi:10.1017/S0080456800020275. https://books.google.com/books?id=7StFAAAAcAAJ&pg=PA143. 
  26. Davy, H. (1808). «Electro-chemical researches on the decomposition of the earths; with observations on the metals obtained from the alkaline earths, and on the amalgam procured from ammonia». Philosophical Transactions of the Royal Society of London 98: 333–70. doi:10.1098/rstl.1808.0023. Bibcode1808RSPT...98..333D. https://books.google.com/books?id=gpwEAAAAYAAJ&pg=102. Davy, H. (1808).
  27. Taylor, Stuart (19 Ιουνίου 2008). «Strontian gets set for anniversary». Lochaber News. Αρχειοθετήθηκε από το πρωτότυπο στις 13 Ιανουαρίου 2009. CS1 maint: BOT: original-url status unknown (link)
  28. Weeks, Mary Elvira (1932). «The discovery of the elements: X. The alkaline earth metals and magnesium and cadmium». Journal of Chemical Education 9 (6): 1046–57. doi:10.1021/ed009p1046. Bibcode1932JChEd...9.1046W. 
  29. Partington, J. R. (1942). «The early history of strontium». Annals of Science 5 (2): 157. doi:10.1080/00033794200201411. 
  30. Partington, J. R. (1951). «The early history of strontium. Part II». Annals of Science 7: 95. doi:10.1080/00033795100202211. 
  31. Many other early investigators examined strontium ore, among them: (1) Martin Heinrich Klaproth, "Chemische Versuche über die Strontianerde" (Chemical experiments on strontian ore), Crell's Annalen (September 1793) no. ii, pp. 189–202 ; and "Nachtrag zu den Versuchen über die Strontianerde" (Addition to the Experiments on Strontian Ore), Crell's Annalen (February 1794) no. i, p. 99 ; also (2) Kirwan, Richard (1794). «Experiments on a new earth found near Stronthian in Scotland». The Transactions of the Royal Irish Academy 5: 243–56. 
  32. Fachgruppe Geschichte Der Chemie, Gesellschaft Deutscher Chemiker (2005). Metalle in der Elektrochemie. σελίδες 158–62. 
  33. Heriot, T. H. P (2008). «strontium saccharate process». Manufacture of Sugar from the Cane and Beet. ISBN 978-1-4437-2504-0. 
  34. Börnchen, Martin. «Der Strontianitbergbau im Münsterland». Αρχειοθετήθηκε από το πρωτότυπο στις 11 Δεκεμβρίου 2014. Ανακτήθηκε στις 9 Νοεμβρίου 2010. 
  35. Martin, Josèm; Ortega-Huertas, Miguel; Torres-Ruiz, Jose (1984). «Genesis and evolution of strontium deposits of the granada basin (Southeastern Spain): Evidence of diagenetic replacement of a stromatolite belt». Sedimentary Geology 39 (3–4): 281. doi:10.1016/0037-0738(84)90055-1. Bibcode1984SedG...39..281M. Martin, Josèm; Ortega-Huertas, Miguel; Torres-Ruiz, Jose (1984).
  36. «Chain Fission Yields». iaea.org. "Chain Fission Yields". iaea.org.
  37. Nordin, B. E. (1968). «Strontium Comes of Age». British Medical Journal 1 (5591): 566. doi:10.1136/bmj.1.5591.566. Nordin, B. E. (1968).
  38. Turekian, K. K.; Wedepohl, K. H. (1961). «Distribution of the elements in some major units of the Earth's crust». Geological Society of America Bulletin 72 (2): 175–92. doi:10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2. Bibcode1961GSAB...72..175T. 
  39. Ober, Joyce A. «Mineral Commodity Summaries 2010: Strontium» (PDF). United States Geological Survey. Ανακτήθηκε στις 14 Μαΐου 2010. 
  40. Heuel-Fabianek, B. (2014). «Partition Coefficients (Kd) for the Modelling of Transport Processes of Radionuclides in Groundwater». Berichte des Forschungszentrums Jülich 4375. ISSN 0944-2952. http://juser.fz-juelich.de/record/154001/files/FZJ-2014-03430.pdf. 
  41. Stringfield, V. T. (1966). «Strontium». Artesian water in Tertiary limestone in the southeastern States. Geological Survey Professional Paper. United States Government Printing Office. σελίδες 138–39. 
  42. Angino, Ernest E.; Billings, Gale K.; Andersen, Neil (1966). «Observed variations in the strontium concentration of sea water». Chemical Geology 1: 145. doi:10.1016/0009-2541(66)90013-1. Bibcode1966ChGeo...1..145A. 
  43. Sun, Y.; Sun, M.; Lee, T.; Nie, B. (2005). «Influence of seawater Sr content on coral Sr/Ca and Sr thermometry». Coral Reefs 24: 23. doi:10.1007/s00338-004-0467-x. 
  44. Kogel, Jessica Elzea· Trivedi, Nikhil C. (5 Μαρτίου 2006). Industrial Minerals & Rocks: Commodities, Markets, and Uses. ISBN 978-0-87335-233-8. 

Εξωτερικοί σύνδεσμοι