Μετάβαση στο περιεχόμενο

Εγγράψιμο τετράπλευρο

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
(Ανακατεύθυνση από Εγγεγραμμένο τετράπλευρο)
Ένα εγγράψιμο τετράπλευρο .

Στην γεωμετρία, ένα κυρτό τετράπλευρο λέγεται εγγράψιμο σε κύκλο ή κυκλικό αν υπάρχει κύκλος που διέρχεται και από τις τέσσερις κορυφές του , , και . Ο κύκλος αυτός ονομάζεται περιγεγραμμένος κύκλος του και λέγεται ότι το τετράπλευρο είναι εγγεγραμμένο σε αυτόν.[1]:111[2]:134[3]:38

Οι μεσοκάθετοι των πλευρών ενός εγγράψιμου τετραπλεύρου τέμνονται στο περίκεντρο.
Οι απέναντι γωνίες είναι παραπληρωματικές, δηλαδή .
Κάθε γωνία είναι ίση με την εξωτερική της απέναντί της, π.χ. η είναι ίση με την εξωτερική της .
Οι κορυφές .
  • Ένα κυρτό τετράπλευρο είναι εγγράψιμο σε κύκλο αν και μόνο αν οι μεσοκάθετοι των πλευρών του διέρχονται από το ίδιο σημείο. Το σημείο αυτό είναι το κέντρο του περιγεγραμμένου του κύκλου και λέγεται περίκεντρο.
  • Ένα κυρτό τετράπλευρο είναι εγγράψιμο αν και μόνο αν δύο απέναντι γωνίες του είναι παραπληρωματικές, δηλαδή ή
  • Ένα κυρτό τετράπλευρο είναι εγγράψιμο αν και μόνο αν μία γωνία είναι ίση με την εξωτερική της απέναντί της.
  • Ένα κυρτό τετράπλευρο είναι εγγράψιμο αν και μόνο αν μία από τις πλευρές φαίνεται από τις άλλες δύο κορυφές από ίσες γωνίες, π.χ. .
Το ορθογώνιο και .
  • Σε ένα εγγράψιμο τετράπλευρο , θεωρούμε τους εγγεγραμμένους κύκλους , , και των τριγώνων , , και . Τότε ισχύει ότι

Το εμβαδόν ενός εγγράψιμου τετραπλεύρου με μήκη πλευρών δίνεται από τον τύπο του Βραγχμαγκούπτα (ο οποίος γενικεύει τον τύπο του Ήρωνα για τα τρίγωνα)

,

όπου η ημιπερίμετρος του τετραπλεύρου.

Για δοσμένα τα μήκη των πλευρών , το εγγράψιμο τετράπλευρο είναι αυτό με το μέγιστο εμβαδόν (δείτε εδώ).[4]

.
.
  • Σε ένα εγγράψιμο τετράπλευρο τα μήκη των διαγωνίων δίνονται από τις σχέσεις
και .
  • (Θεώρημα τεμνόμενων χορδών) Σε ένα τετράπλευρο τετράπλευρο όπου το σημείο τομής των διαγωνίων του και , ισχύει ότι
.
  • Η ακτίνα του περιγεγραμμένου κύκλου συναρτήσει των πλευρών του δίνεται από τον τύπο
.
  • Για την γωνία ενός εγγράψιμου τετραπλεύρου ισχύει ότι[7]
,
όπου η ημιπερίμετρος του τετραπλεύρου.

Ειδικές περιπτώσεις

[Επεξεργασία | επεξεργασία κώδικα]
Οι διχοτόμοι των γωνιών ενός τετραπλεύρου δημιουργούν ένα εγγράψιμο τετράπλευρο.
  • Οι διχοτόμοι των γωνιών ενός τετράπλευρου δημιουργούν ένα εγγράψιμο τετράπλευρο ή συντρέχουν (όταν το τετράπλευρο είναι περιγεγράψιμο).

Τα εγγράψιμα τετράπλευρα και οι ιδιότητες αυτών, χρησιμοποιούνται στις αποδείξεις των εξής θεωρημάτων:

  1. Ταβανλης, Χ. Επίπεδος Γεωμετρία. Αθήνα: Ι. Χιωτελη.
  2. Πάμφιλος, Πάρις (2012). Ελάσσον Γεωμετρικόν. Πανεπιστημιακές εκδόσεις Κρήτης. ISBN 9789605243807.
  3. Βασιλειάδης, Παν. Κ. (1966). Γεωμετρία Τόμος α' Επιπεδομετρία. Θεσσαλονίκη.
  4. Hajja, Mowaffaq (14 June 2016). 100.22 The maximal area property of cyclic quadrilaterals. 100. doi:10.1017/mag.2016.75.
  5. Πανακης, Ιωάννης (1974). Μαθηματικά Δ'-Ε'-ΣΤ' Γυμνασίου (Θετικής Κατευθύνσεως). Αθήνα: Οργανισμός Εκδόσεων Διδακτικών Βιβλίων. σελίδες 49–51.
  6. Στεργίου, Μπάμπης (2012). Γεωμετρία 2: Μετρικές σχέσεις σε τρίγωνα, Πολύγωνα,Εμβαδά. Αθήνα: Σαββάλας. σελίδες 187–188. ISBN 978-960-493-159-0.
  7. Siddons, A. W.; Hughes, R. T. (1929), Trigonometry, Cambridge University Press, σελ. 202, OCLC 429528983