Εντουάρ Λυκά

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Μετάβαση σε: πλοήγηση, αναζήτηση
Εντουάρ Λυκά
Elucas 1.png
Γέννηση
Τόπος γέννησης Αμιάν
Θάνατος
Τόπος θανάτου Παρίσι
Υπηκοότητα Γαλλία
Ερευνητικός τομέας θεωρία αριθμών
Σπουδές École Normale Supérieure
Επάγγελμα/
ιδιότητες
μαθηματικός
Commons page Wikimedia Commons

Ο Φρανσουά Εντουάρ Ανατόλ Λυκά (François Édouard Anatole Lucas, 4 Απριλίου 18423 Οκτωβρίου 1891) ήταν Γάλλος μαθηματικός, γνωστός για τη μελέτη της Ακολουθίας Φιμπονάτσι. Οι πολύ συγγενικές της ακολουθίες Λυκά και οι αριθμοί Λυκά φέρουν το όνομά του.

Βιογραφικά στοιχεία[Επεξεργασία | επεξεργασία κώδικα]

Ο Εντουάρ Λυκά γεννήθηκε στην Αμιένη και φοίτησε στην École Normale Supérieure. Εργάσθηκε στο Αστεροσκοπείο των Παρισίων και αργότερα ως καθηγητής των μαθηματικών στο Παρίσι, ενώ υπηρέτησε και στον στρατό ως αξιωματικός του πυροβολικού κατά τον πόλεμο του 1870.

Το 1875 ο Λυκά έθεσε μία μαθηματική πρόκληση: να αποδειχθεί ότι η μοναδική λύση της διοφαντικής εξισώσεως:

για N > 1 είναι η N = 24 και M = 70. Το πρόβλημα της επιλύσεως αυτής της εξισώσεως είναι γνωστό ως «πρόβλημα με τις μπάλες κανονιού», επειδή μπορεί να οπτικοποιηθεί ως το πρόβλημα του να συσσωρευθούν μπάλες κανονιού σε τετραγωνική διάταξη πάνω σε τετράγωνη βάση ώστε να σχηματισθεί μία τετραγωνική πυραμίδα. Χρειάσθηκε να περάσουν αρκετές δεκαετίες για να δοθεί η απόδειξη για αυτή την αξιοσημείωτη εικασία του Λυκά: Μόλις το 1918 βρέθηκε μία αποδειξη, με τη χρήση ελλειπτικών συναρτήσεων). Κατά περίεργο τρόπο, αυτό το πρόβλημα σχετίζεται με την αρχική μορφή της μαθηματικής θεωρίας των χορδών, που υπέθετε 26 διαστάσεις.[1] Πάντως πιο πρόσφατα δημοσιεύθηκαν και πιο εύκολες αποδείξεις (χωρίς καταφυγή στα ανώτερα μαθηματικά της μιγαδικής αναλύσεως).[2][3]

Εκτός αυτού, ο Λυκά επινόησε μεθόδους για τον έλεγχο του αν ένας αριθμός είναι πρώτος. Το 1857, σε ηλικία μόλις 15 ετών, άρχισε να ελέγχει το αν ο αριθμός 2127 − 1 με χειρόγραφους υπολογισμούς και χρήση των ακολουθιών Λυκά. Το 1876, μετά από 19 χρόνια[4], κατάφερε τελικώς να αποδείξει ότι ο 2127 − 1 είναι πρώτος. Αυτός θα παρέμενε ο μεγαλύτερος γνωστός πρώτος Μερσέν επί τρία τέταρτα του αιώνα και μάλλον θα κρατήσει για πάντα το ρεκόρ του μεγαλύτερου πρώτου αριθμού που ανακαλύφθηκε ποτέ με χειρόγραφους υπολογισμούς. Αργότερα ο Ντέρικ Χένρυ Λέμερ επεξεργάσθηκε τους ελέγχους του Λυκά και επινόησε τον έλεγχο Lucas-Lehmer.

Ο Λυκά ενδιαφερόταν επίσης για τα ψυχαγωγικά μαθηματικά. Ανεκάλυψε μία κομψή δυαδική λύση στον γρίφο των Κινέζικων Δακτυλίων. Επινόησε επίσης το γνωστό παζλ Πύργος του Ανόι, το οποίο εκμεταλλεύθηκε εμπορικά υπό το ψευδώνυμο N. Claus de Siam (αναγραμματισμός του Lucas d'Amiens), ενώ το 1889 δημοσίευσε για πρώτη φορά μία περιγραφή του παιχνιδιού Κουκκίδες και τετράγωνα (με την ονομασία «La pipopipette»).

Ο Λυκά πέθανε πρόωρα ως εξής: Στη δεξίωση του ετήσιου συνεδρίου της «Γαλλικής Ενώσεως Προαγωγής των Επιστημών» (Association française pour l'avancement des sciences), ένας σερβιτόρος έρριξε κατά λάθος κάποιο σερβίτσιο και ένα κομμάτι σπασμένου πιάτου έκοψε τον Λυκά στο μάγουλο. Ο μαθηματικός απεβίωσε λίγες ημέρες αργότερα από ερυσιπελοειδή σηψαιμία, σε ηλικία μόλις 49 ετών.

Εργογραφία[Επεξεργασία | επεξεργασία κώδικα]


Παραπομπές[Επεξεργασία | επεξεργασία κώδικα]

  1. «week95». Math.ucr.edu. 1996-11-26. http://math.ucr.edu/home/baez/week95.html. Ανακτήθηκε στις 2012-01-04. 
  2. Ma, D.G. (1985). «An Elementary Proof of the Solutions to the Diophantine Equation ». Sichuan Daxue Xuebao 4: 107–116. 
  3. Anglin, W.S. (1990). «The Square Pyramid Puzzle». American Mathematical Monthly 97 (2): 120–124. doi:10.2307/2323911. 
  4. «Prime Curios!: 17014...05727 (39-digits)». Primes.utm.edu. http://primes.utm.edu/curios/page.php?number_id=135. Ανακτήθηκε στις 2012-01-04. 

Πηγές[Επεξεργασία | επεξεργασία κώδικα]

Εξωτερικοί σύνδεσμοι[Επεξεργασία | επεξεργασία κώδικα]

Στο λήμμα αυτό έχει ενσωματωθεί κείμενο από το λήμμα Édouard Lucas της Αγγλικής Βικιπαίδειας, η οποία διανέμεται υπό την GNU FDL και την CC-BY-SA 3.0. (ιστορικό/συντάκτες).