Αλλαγές

Πήδηση στην πλοήγηση Πήδηση στην αναζήτηση
Καμία αλλαγή στο μέγεθος ,  πριν από 5 έτη
μ
γλωσσικά
Στα [[μαθηματικά]], '''θεωρία συνόλων''' ή '''συνολοθεωρία''' είναι η [[θεωρία]] που μελετάει τα [[σύνολο|σύνολα]], σε αντίθεση με τις υπόλοιπες μαθηματικές θεωρίες που εξετάζουν δομές, δηλαδή σύνολα εφοδιασμένα με συναρτήσεις και σχέσεις (π.χ. ομάδες, τοπολογικοί χώροι). Αν και οποιοσδήποτε τύπος από αντικείμενα μπορεί να ορίσει σύνολο, η θεωρία συνόλων εφαρμόζεται συνήθως σε αντικείμενα σχετικά με τα μαθηματικά.
 
Η σύγχρονη μελέτη της θεωρίας συνόλων ξεκίνησε από τον [[Γκέοργκ ΚαντόρΚάντορ]] (Georg Cantor) και τον [[Ρίχαρντ Ντέντεκιντ|Ντέντεκιντ]] (Dedekind) τη δεκαετία του 1870. Μετά την ανακάλυψη παραδόξων στην άτυπη θεωρία συνόλων, πληθώρα συστημάτων αξιωμάτων προτάθηκαν την αρχή του εικοστού αιώνα, το πιο γνωστό από τα οποία η [[Ζερμέλο-Φράνκελ θεωρία συνόλων]] (Zermelo–Fraenkel set theory), με το [[αξίωμα επιλογής]].
 
Η θεωρία συνόλων, που τυποποιείται με χρήση της [[λογική πρώτου βαθμού|λογικής πρώτου βαθμού]], είναι το πιο διαδεδομένο θεμελιώδες σύστημα για τα μαθηματικά. Η γλώσσα της θεωρίας συνόλων χρησιμοποιείται στους ορισμούς σχεδόν όλων των μαθηματικών αντικειμένων, όπως οι [[συνάρτηση|συναρτήσεις]], και έννοιες της συνολοθεωρίας υπάρχουν σε όλα τα διδακτέα προγράμματα μαθηματικών. Στοιχειώδη δεδομένα για τα σύνολα και την ιδιότητα μέλους συνόλου μπορούν να εισαχθούν στο δημοτικό σχολείο, μαζί με [[διάγραμμα Venn|διαγράμματα Βεν]], για τη μελέτη συλλογών από κοινά φυσικά αντικείμενα. Βασικές πράξεις όπως η [[Ένωση συνόλων|ένωση]] και η τομή συνόλων μπορούν να μελετηθούν σ'αυτό το πλαίσιο. Πιο προχωρημένες έννοιες όπως η [[πληθάριθμος|πληθικότητα]] είναι βασικό κομμάτι του προπτυχιακού διδακτικού προγράμματος μαθηματικών.
984

επεξεργασίες

Μενού πλοήγησης