Ρητή συνάρτηση

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Μετάβαση σε: πλοήγηση, αναζήτηση
Μαθηματικές Συναρτήσεις
Συναρτήσεις μίας μεταβλητής
\mathbf{y} = f(x)
Συναρτήσεις πολλών μεταβλητών
\mathbf{z} = f(x , y , , y_n)

Η ρητή συνάρτηση είναι μία κλασματική συνάρτηση με πολυωνυμικούς όρους. Ανήκει στις αλγεβρικές συναρτήσεις. Περιγράφεται από τον γενικό τύπο:

 f(x) = \frac{f(x)}{g(x)} ή
 f(x) = \frac{a_1 x^n + b_1 x^{n-1} +...+ c_1 x + d_1}{a_2x^m+ b_2 x^{m-1} +...+ c_2 x + d_2}

Η εκθετική συνάρτηση ορίζεται για κάθε πραγματικό αριθμό, εκτός από τους αριθμούς που μηδενίζουν το πολυώνυμο του παρονομαστή.

Γραφική παράσταση της ρητής συνάρτησης :
y = \frac{x^2-3x-2}{x^2-4}

Παραγώγιση ρητής συνάρτησης[Επεξεργασία | επεξεργασία κώδικα]

Εφόσον οι συναρτήσεις f(x) και g(x) είναι παραγωγίσιμες ως πολυωνυμικές προκύπτει ότι και η συνάρτηση f(x)/g(x) είναι παραγωγίσιμη και η παράγωγός της ισούται με:

\left( \frac{f(x)}{g(x)} \right)'=\frac{f'(x) g(x) - f(x) g'(x)}{g^2(x)}

Ολοκλήρωση ρητής συνάρτησης[Επεξεργασία | επεξεργασία κώδικα]

Η ολοκλήρωση ρητής συνάρτησης δίνει ως αποτέλεσμα συνήθως κάποια υπερβατική συνάρτηση. Υπάρχουν πολλές μέθοδοι ολοκλήρωσης ρητής συνάρτησης ανάλογα με την περίπτωση. Στις περισσότερες περιπτώσεις η συνάρτηση γράφεται ως άθροισμα απλούστερων κλασμάτων της μορφής:

\frac{A}{x+b} ή  \frac{A}{x^2+b^2}

Τα οποία έχουν γνωστά ολοκληρώματα:

\int\frac{A}{x + b} dx= A \ln\left|x + b\right|
\int\frac{A}{x^2+b^2} dx = \frac{A}{b}\arctan\frac{x}{b}\,\!

Πηγές[Επεξεργασία | επεξεργασία κώδικα]

  • Διαφορικός και ολοκληρωτικός λογισμός, Σύγχρονη εκδοτική, τόμος Β΄
  • Μαθηματικά θετικής & τεχνολογικής κατεύθυνσης Γ΄λυκείου - ΟΕΔΒ