Πεπερασμένο σώμα

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Μετάβαση σε: πλοήγηση, αναζήτηση

Στα μαθηματικά, ένα σώμα καλείται πεπερασμένο αν το πλήθος των στοιχείων του είναι πεπερασμένο. Ένα πεπερασμένο σώμα λέγεται αλλιώς και σώμα Γκαλουά προς τιμήν του Γάλλου μαθηματικού Γκαλουά (Évariste Galois). Τα πεπερασμένα σώματα είναι σημαντικά στην Θεωρία Αριθμών, την Αλγεβρική Γεωμετρία, την Κρυπτογραφία και τη Θεωρία Κωδικοποίησης.

Κατηγοριοποίηση[Επεξεργασία | επεξεργασία κώδικα]

Τα πεπερασμένα σώματα έχουν μελετηθεί πλήρως και κατηγοριοποιούνται ως εξής: [1]:

  • Κάθε πεπερασμένο σώμα έχει pn στοιχεία, όπου p πρώτος αριθμός n ≥ 1 ακέραιος. (Το p ονομάζεται χαρακτηριστική του σώματος.)
  • Για κάθε πρώτο p και κάθε ακέραιο n ≥ 1, υπάρχει ένα πεπερασμένο σώμα με pn στοιχεία.
  • Όλα τα σώματα με pn στοιχεία είναι ισόμορφα μεταξύ τους. Μπορούμε να ταυτίσουμε όλα τα σώματα με τον ίδιο αριθμό στοιχείων. Συμβολισμός: GF(pn). όπου τα γράμματα "GF" προέρχονται από το αγγλικό "Galois field" (σώμα Γκαλουά).

Μερικά μικρά πεπερασμένα σώματα[Επεξεργασία | επεξεργασία κώδικα]

GF(2):

 + | 0 1        · | 0 1
 --+----        --+----
 0 | 0 1        0 | 0 0
 1 | 1 0        1 | 0 1

GF(3):

 + | 0 1 2       · | 0 1 2
 --+------       --+------
 0 | 0 1 2       0 | 0 0 0
 1 | 1 2 0       1 | 0 1 2
 2 | 2 0 1       2 | 0 2 1

GF(4):

 + | 0 1 A B       · | 0 1 A B
 --+--------       --+--------
 0 | 0 1 A B       0 | 0 0 0 0
 1 | 1 0 B A       1 | 0 1 A B
 A | A B 0 1       A | 0 A B 1
 B | B A 1 0       B | 0 B 1 A

Παραπομπές[Επεξεργασία | επεξεργασία κώδικα]

  1. p287, Jacobson, Nathan (1985). Basic Algebra I (2nd Ed. έκδοση). New York: W. H. Freeman and Company. ISBN 0716714809.