Χρήστης:Lianaoug/πρόχειρο

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Μια κάρτα του 1915 από μια από τους πρωτοπόρους της αντιμεταθετικής άλγεβρας,την Emmy Noether, στον E. Fischer, όπου μιλάει για την δουλειά της στην αντιμεταθετική άλγεβρα.

Αντιμεταθετική άλγεβρα είναι ο κλάδος της άλγεβρας που ασχολείται με την μελέτη των αντιμεταθετικών δακτυλίών, των ιδεωδών, και των modules που παράγονται πάνω από αυτούς τους δακτύλιους. Η αντιμεταθετική άλγεβρα αποτελεί βασικό εργαλείο της αλγεβρικής γεωμετρίας και της αλγεβρικής θεωρίας αριθμών. Βασικά παραδείγματα αντιμεταθετικών δακτυλίων αποτελούν οι τα σώματα, ο δακτύλιος των ακεραίων καθώς και οι πολυωνυμικοί (μιας ή περισσότερων μεταβλητών) δακτύλιοι, οι δακτύλιοι των αλγεβρικών ακεραίων και οι δακτύλιοι των p-αδικών αριθμών.[1]

Αντιμεταθετική άλγεβρα είναι το βασικό τεχνικό εργαλείο στην τοπική μελέτη των διατάξεων.

Η μελέτη των δακτυλίων που δεν είναι απαραίτητα αντιμεταθετικοί είναι γνωστή ως μη-αντιμεταθετική άλγεβρα . Αυτή περιλαμβάνει τη δακτύλια θεωρία, την θεωρία αναπαραστάσεων, και τη θεωρία της άλγεβρας Banach.

Επισκόπηση[Επεξεργασία | επεξεργασία κώδικα]

Η αντιμεταθετική άλγεβρα είναι ουσιαστικά η μελέτη των δακτυλίων που υπάρχουν στην αλγεβρική θεωρία αριθμών και την αλγεβρική γεωμετρία.

Στην αλγεβρική θεωρία αριθμών, οι δακτύλιοι των αλγεβρικών ακεραίων είναι οι δακτύλιοι του Dedekind, οι οποίοι αποτελούν, συνεπώς, μια σημαντική κατηγορία των αντιμεταθετικών  δακτυλίων. Οι εκτιμήσεις που σχετίζονται με την αριθμητική του μέτρου οδήγησαν στην έννοια του δακτυλίου αποτίμησης. Ο περιορισμός τουτομέα της αλγεβρικής επέκτασης όσον αφορά τους υποδακτυλίους οδήγησε στις έννοιες της ολοκληρωματικής επέκτασης και των ολοκληρωματικά κλειστών πεδίων ορισμού , καθώς και στην έννοια της διακλάδωσης μιας επέκτασης των αποτιμημένων δακτυλίων.

Η έννοια του εντοπισμού ενός δακτυλίου(ιδίως ο εντοπισμός όσον αφορά το πρώτο ιδεώδες, ο οποίος συνίσταται από την αναστροφή ενός ενιαίου στοιχείου και το ολικό πηλίκο δακτυλίου) είναι μία από τις κύριες διαφορές μεταξύ αντιμεταθετικής άλγεβρας και της θεωρία των μη-αντιμεταθετικών δακτυλίων. Αυτό οδηγεί σε μια σημαντική κατηγορία αντιμεταθετικών δακτυλίων, τους τοπικούς δακτύλιους που έχουν μόνο ένα μεγιστοτικό ιδεώδες. Το σύνολο των πρώτων ιδεωδών των αντιμεταθετικών δακτυλίων είναι φυσικά εξοπλισμένο με μια τοπολογία, τηνZariski τοπολογία. Όλες αυτές οι έννοιες χρησιμοποιούνται ευρέως στην αλγεβρική γεωμετρία και αποτελούν τα βασικά τεχνικά εργαλεία για τον καθορισμό της θεωρίας σχήματος, μια γενίκευση της αλγεβρικής γεωμετρίας που εισάγεται από τον Grothendieck.

Πολλές άλλες έννοιες της αντιμεταθετικής άλγεβρας είναι ομόλογες των γεωμετρικών εννοιών που συναντώνται στην αλγεβρική γεωμετρία. Αυτή είναι η περίπτωση της διάστασης του Krull, της πρωτοβάθμιας παραγοντοποίησης, των κανονικών δακτυλίων, των Cohen-Mecaulay δακτυλίων, των Gorenstein δακτυλίων και πολλών άλλων εννοιών.

Ιστορία[Επεξεργασία | επεξεργασία κώδικα]

Το θέμα, που ήταν αρχικά γνωστό ως θεωρία ιδεωδών, ξεκίνησε με την εργασία του Richard Dedekinds σχετικά με ιδανικά, η οποία βασίστηκε στο προγενέστερο έργο του Ernst Kummer και του Leopold Kronecker. Αργότερα, ο David Hilbert εισήγαγε τον όρο δακτύλιος προκειμένου να γενικεύσει τον προηγούμενο όρο δακτύλιος αριθμός. Ο Hilbert εισήγαγε μια από τις πιο αφηρημένες προσεγγίσεις προκειμένου να αντικαταστήσει τις πιο συγκεκριμένες και υπολογιστικά προσανατολισμένες μεθόδους που στηρίζονται σε θέματα όπως η σύνθετη ανάλυση και η κλασική αμετάβλητη θεωρία. Με τη σειρά του, ο Hilbert επηρεάζεται έντονα από την Emmy Noether, η οποία αναδιατυπώνει πολλά από τα προηγούμενα αποτελέσματα σε σχέση με μια συνθήκη αύξουσας αλυσίδας, η οποία είναι τώρα γνωστή ως συνθήκη Noether. Ένα άλλο σημαντικό ορόσημο ήταν το έργο του φοιτητή του Hilbert, Εμάνουελ Λάσκερ, ο οποίος εισήγαγε τα πρωτεύοντα ιδεώδη και απέδειξε την πρώτη εκδοχή του θεωρήματος Lasker-Noether.

Ο κύριος υπεύθυνος για τη γέννηση της αντιμεταθετικής άλγεβρας ως ένα ώριμο θέμα ήταν Wolfgang Krull, ο οποίος εισήγαγε τις θεμελιώδεις έννοιες της τοπολογίας και της πλήρωσης ενός δακτυλίου, καθώς και των κανονικών τοπικών δακτυλίων. Εισήγαγε την έννοια της διάστασης Krull ενός δακτυλίου, το πρώτο για τους δακτύλιους Noether πριν από την κίνηση του να επεκτείνει τη θεωρία του για να καλύψει γενικά τους αποτιμημένους δακτύλιους και τους δακτύλιους Krull. Μέχρι σήμερα, το κύριο ιδανικό θεώρημα του Krullθεωρείται ευρέως το πιο σημαντικό θεμελιώδες θεώρημα στην αντιμεταθετική άλγεβρα. Τα αποτελέσματα αυτά άνοιξαν το δρόμο για την εισαγωγή της αντιμεταθετικής άλγεβρας στην αλγεβρική γεωμετρία, μια ιδέα που θα μπορούσε να φέρει την επανάσταση στο τελευταίο θέμα.

Μεγάλο μέρος της σύγχρονης ανάπτυξης της αντιμεταθετικής άλγεβρας δίνει έμφαση στις ενότητες. Τα ιδεώδη ενός δακτυλίου R και των R-αλγεβρών είναι ειδικές περιπτώσεις των R-modules, οπότε η θεωρία του module περιλαμβάνει τόσο την ιδανική θεωρία, όσο και την θεωρία των δακτυλιακών επεκτάσεων. Αν και είχε ήδη ξεκινήσει με το έργο του Kronecker, η σύγχρονη προσέγγιση της αντιμεταθετικής άλγεβρας χρησιμοποιώντας την θεωρία module, συνήθως πιστώνεται στον Krull και στονNoether.

Βασικά εργαλεία και αποτελέσματα[Επεξεργασία | επεξεργασία κώδικα]

Δακτύλιοι του Noether[Επεξεργασία | επεξεργασία κώδικα]

Στα μαθηματικά, και πιο συγκεκριμένα στον τομέα της σύγχρονης άλγεβρας, η οποία είναι γνωστή ως δακτύλια θεωρία, ένας δακτύλιος Noether, το όνομά του οποίου προέρχεται από την Emmy Noether, είναι ένας δακτύλιος στον οποίο κάθε μη-κενό σύνολο ιδανικών έχει ένα μέγιστο στοιχείο. Αντίστοιχα, ένας δακτύλιος είναι Noether αν ικανοποιεί την συνθήκη της αύξουσας αλυσίδας για ιδανικά, δηλαδή, για κάθε αλυσίδα:

υπάρχει ένα n τέτοιο ώστε:

Για να είναι ένας αντιμεταθετικός δακτύλιος Noether αρκεί κάθε πρώτο ιδεώδες του δακτυλίου να είναι πεπερασμένα παραγόμενο. (Το αποτέλεσμα προήλθε από τον I. S. Cohen.)

Η έννοια του δακτύλιου Noether είναι θεμελιώδους σημασίας τόσο στην αντιμεταθετική, όσο και στην μη-αντιμεταθετική δακτύλια θεωρία, λόγω του ρόλου που διαδραματίζει στην απλούστευση της ιδανικής δομής για έναν δακτύλιο. Για παράδειγμα, ο δακτύλιος των ακεραίων και ο πολυωνυμικός δακτύλιος πάνω από ένα πεδίο είναι και οι δύο δακτύλιοι Noether, και κατά συνέπεια, θεωρήματα όπως το θεώρημα Lasker-Noether, το θεώρημα τομής του Krull, και το θεώρημα βάσης του Hilbert προέρχονται από αυτούς . Επιπλέον, αν ένας δακτύλιος είναι Noether, τότε ικανοποιεί την συνθήκη φθίνουσας αλυσίδας για τα πρώτα ιδεώδη. Αυτή η ιδιότητα, προτείνει μια βαθιά θεωρία της διάστασης για τους δακτύλιους Noether, έχοντας ως απαρχή την έννοια της διάστασης του Krull.

References[Επεξεργασία | επεξεργασία κώδικα]

  1. Atiyah and Macdonald, 1969, Chapter 1

[[Κατηγορία:Αντιμεταθετική άλγεβρα]]