Βιοκαύσιμα

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Μετάβαση σε: πλοήγηση, αναζήτηση

Βιοκαύσιμα (αγγλ. biofuels) ονομάζονται τα καύσιμα εκείνα στερεά, υγρά ή αέρια τα οποία προέρχονται από τη βιομάζα, το βιοδιασπώμενο δηλαδή κλάσμα προϊόντων ή αποβλήτων διαφόρων ανθρώπινων δραστηριοτήτων.

Ιστορικό[Επεξεργασία | επεξεργασία κώδικα]

Χαρακτηριστικά[Επεξεργασία | επεξεργασία κώδικα]

Τα βιοκαύσιμα προέρχονται από οργανικά προϊόντα και θεωρούνται ανανεώσιμα καύσιμα. Ως ανανεώσιμα καύσιμα έχουν το χαρακτηριστικό των χαμηλότερων εκπομπών CO2 στο συνολικό κύκλο ζωής τους σε σχέση με τα συμβατικά ορυκτά καύσιμα, στοιχείο που εξαρτάται άμεσα από την προέλευση τους, τη χρήση τους αλλά και τον τρόπο παραγωγής και διανομής τους. Κατά την καύση τους τα καύσιμα αυτά εκπέμπουν περίπου ίσες ποσότητες CO2 με τα αντίστοιχα πετρελαϊκής προέλευσης. Επειδή όμως είναι οργανικής προέλευσης ο άνθρακας τον οποίο περιέχουν έχει δεσμευτεί κατά την ανάπτυξη της οργανικής ύλης από την ατμόσφαιρα στην οποία επανέρχεται μετά την καύση κι έτσι το ισοζύγιο εκπομπών σε όλο τον κύκλο ζωής του βιοκαυσίμου είναι θεωρητικά μηδενικό. Στην πράξη επειδή κατά την παραγωγή και διακίνηση της πρώτης ύλης αλλά και των ίδιων των βιοκαυσίμων υπεισέρχονται και άλλες δραστηριότητες κατά τις οποίες παράγονται εκπομπές CO2 το τελικό όφελος από τα καύσιμα αυτά μπορεί να είναι από πολύ μεγάλο έως μηδαμινό. Για να αποφανθεί κανείς ασφαλώς για τα περιβαλλοντικά οφέλη κάποιου βιοκαυσίμου πρέπει να πραγματοποιήσει εξειδικευμένη ανάλυση κύκλου ζωής. Σχετικά στοιχεία για διάφορα βιοκαύσιμα μπορούν να βρεθούν στη διεύθυνση [1].

Βιοντίζελ[Επεξεργασία | επεξεργασία κώδικα]

Πρόκειται για μεθυλ - ή αιθυλ – εστέρες λιπαρών οξέων από παρθένα ή χρησιμοποιημένα φυτικά έλαια (βρώσιμα και μη) και ζωικά λίπη. Η διαδικασία παραγωγής του περιλαμβάνει την αντίδραση τριγλυκεριδίων με μεθανόλη ή αιθανόλη.[1]

Η πρώτη ύλη, που συμμετέχει με το μεγαλύτερο ποσοστό στην παγκόσμια παραγωγή του βιοντίζελ, είναι η ελαιοκράμβη σε ποσοστό 84 % και ακολουθεί ο ηλίανθος με ποσοστό 13 %.[2] Για την παραγωγή του χρησιμοποιούνται όμως και άλλα φυτικά έλαια, όπως σογιέλαιο, αραχιδέλαιο, ηλιέλαιο, φοινικέλαιο, λινέλαιο, ελαιόλαδο κακής ποιότητας και τα έλαια από μαγειρεία.[3]

Το βιοντίζελ αποτελεί ένα δοκιμασμένο βιοκαύσιμο. Η τεχνολογία για τη παραγωγή και τη χρήση του είναι γνωστή πάνω από 50 χρόνια.[4] Ωστόσο, το βιοντίζελ φαίνεται να μη μπορεί να ικανοποιήσει ακόμη και ένα μικρό κλάσμα της υφιστάμενης ζήτησης καυσίμων για μεταφορά. Έτσι, οι προσπάθειες σήμερα στρέφονται προς μία νέα κατεύθυνση, με πολλές εταιρείες να επιχειρούν την εμπορική παραγωγή βιοντίζελ παραγόμενου από μικροφύκη.

Η ιδέα της χρήσης μικροφυκών ως πηγών βιοκαυσίμου δεν είναι νέα.[5] Έχει έρθει όμως τα τελευταία χρόνια στο προσκήνιο, εξαιτίας της συνεχώς αυξανόμενης τιμής του πετρελαίου και κυρίως λόγω της ανησυχίας για την υπερθέρμανση του πλανήτη που σχετίζεται με τη καύση ορυκτών καυσίμων.[6]

Όπως και τα φυτά, έτσι και τα μικροφύκη απαιτούν ηλιακή ενέργεια για την παραγωγή ελαίων. Σε αντίθεση όμως με τα φυτικά είδη, τα μικροφύκη αναπτύσσονται γρήγορα και είναι εξαιρετικά πλούσια σε έλαια. Η απόδοση τους μπορεί να υπερβεί και το 80 % σε βάρος ξηρής μάζας.[7] Ανάλογα με το είδος, τα μικροφύκη μπορούν να παράγουν πολλά διαφορετικά είδη λιπιδίων και υδρογονανθράκων.[8] Από αυτά, δεν μπορούν να χρησιμοποιηθούν όλα για τα παραγωγή υγρού βιοκαυσίμου, ωστόσο πολλά από αυτά κρίνονται κατάλληλα.

Τα μικροφύκη στην παραγωγή βιοντίζελ[Επεξεργασία | επεξεργασία κώδικα]

Τα φύκη, έχοντας την δυνατότητα να παράγουν TAGs, θεωρούνται ως δεύτερης γενιάς πρώτη ύλη στην παραγωγή βιοκαυσίμων και συγκεκριμένα παραγωγής βιοντίζελ. Έτσι, η δυνητική αξία της φωτοσύνθεσης των μικροφυκών για την παραγωγή βιοκαυσίμων είναι ευρέως αναγνωρισμένη.[9] Τα πλεονεκτήματα των μικροφυκών έναντι άλλων ανώτερων φυτών ως πηγή μεταφοράς βιοκαυσίμων είναι πολυάριθμα:

  • Τα μικροφύκη συνθέτουν και συσσωρεύουν μεγάλες ποσότητες ουδέτερων λιπιδίων/ελαίων (20-50% του ξηρού τους βάρους) και αυξάνονται με υψηλούς αριθμούς
  • Η απόδοση του ελαίου ανά περιοχή των αποικιών των μικροφυκών θα μπορούσε να υπερβεί κατά πολύ την την απόδοση των βέλτιστων ελαιούχων σπόρων
  • Τα μικροφύκη μπορούν να καλλιεργηθούν σε αλατούχα/υφάλμυρα/ παράκτια θαλασσινά νερά σε μη καλλιεργήσιμη γη και δεν ανταγωνίζονται για τους πόρους με τη συμβατική γεωργία
  • Τα μικροφύκη χρησιμοποιούν το άζωτο και το φώσφορο από μία ποικιλία πηγών υγρών αποβλήτων (π.χ. γεωργικές απορροές, απορροές ζωοτροφών και βιομηχανικά και αστικά απόβλητα), παρέχοντας έτσι το πρόσθετο πλεονέκτημα της βιοαποκατάστασης των λυμάτων
  • Τα μικροφύκη δεσμεύουν διοξείδιο του άνθρακα από τα καυσαέρια που εκπέμπονται μέσω καύσης από τα ορυκτά καύσιμα μονάδων ηλεκτροπαραγωγής και από άλλες πηγές, μειώνοντας έτσι τις εκπομπές των αερίων του θερμοκηπίου. Συγκεκριμένα, ένα κιλό βιομάζας φυκών απαιτεί περίπου 1,8 κιλά διοξειδίου του άνθρακα
  • Τα μικροφύκη είναι ανθεκτικά σε περιθωριακά εδάφη, όπως οι έρημοι, ξηρά και ημίξερα εδάφη, τα οποία δεν είναι κατάλληλα για τη συμβατική γεωργία
  • Τα μικροφύκη παράγουν προστιθέμενης αξίας παραπροϊόντα ή υποπροϊόντα, όπως βιοπολυμερή, πρωτεΐνες, πολυσακχαρίτες, χρωστικές ουσίες, ζωοτροφές και λιπάσματα, καθώς επίσης δεν απαιτούν ζιζανιοκτόνα και φυτοφάρμακα
  • Τα μικροφύκη μεγαλώνουν σε κατάλληλα δοχεία καλλιέργειας (φωτο-βιοαντιδραστήρες) κατά τη διάρκεια του έτους με την υψηλότερη ετήσια παραγωγικότητα της βιομάζας βάσει της έκτασης.[10][11]

Τα μικροφύκη μπορούν να παρέχουν πολλούς διαφορετικούς τύπους ανανεώσιμων βιοκαυσίμων. Αυτά περιλαμβάνουν το μεθάνιο, που παράγεται από την αναερόβια πέψη της βιομάζας των φυκών,[12] βιοντίζελ που προέρχεται από έλαια μικροφυκών και φωτοβιολογικώς παραγόμενο βιουδρογόνο,.[13][14]

Η εξαγωγή ελαίου από μικροφύκη απαιτεί την παραγωγή μεγάλης ποσότητας βιομάζας τους, η οποία και θα πρέπει να είναι πλούσια σε έλαια. Το γεγονός αυτό, σε συνδυασμό με το ότι η παραγωγή βιομάζας αυτών είναι πιο ακριβή από την καλλιέργεια φυτών, δυσχεραίνει την προσπάθεια για χρήση τους ως πηγές βιοκαυσίμου. Ωστόσο, το κόστος παραγωγής βιοντίζελ από μικροφύκη μπορεί να μειωθεί σημαντικά ακολουθώντας κατάλληλες στρατηγικές όπως η βελτίωση της απόδοσης των μικροφυκών μέσω της γενετικής μηχανικής. Επιπλέον, εκτός από τα έλαια, τα μικροφύκη περιέχουν και σημαντικές ποσότητες πρωτεϊνών και υδατανθράκων και άλλων θρεπτικών συστατικών.[15] Έτσι, τα υπολείμματα από την εξαγωγή του ελαίου μπορούν να χρησιμοποιηθούν για τη παραγωγή ζωοτροφών γεγονός μπορεί να αντιταχθεί στο υψηλό κόστος παραγωγής βιομάζας τους.

Νομοθεσία[Επεξεργασία | επεξεργασία κώδικα]

Σε μια προσπάθεια να προωθήσει την χρήση των βιοκαυσίμων στον τομέα των μεταφορών στην Ευρώπη, η Ευρωπαϊκή Ένωση υιοθέτησε την κοινοτική οδηγία 2003/30/ΕΚ. Σύμφωνα με την κοινοτική οδηγία 2003/30/ΕΚ βιοκαύσιμα θεωρούνται κάθε υγρό ή αέριο καύσιμο για τις μεταφορές το οποίο παράγεται από βιομάζα όπου βιομάζα είναι το βιοαποικοδομήσιμο κλάσμα προϊόντων, αποβλήτων και καταλοίπων από γεωργικές (συμπεριλαμβανομένων φυτικών και ζωικών ουσιών), δασοκομικές και συναφείς βιομηχανικές δραστηριότητες, καθώς και το βιοαποικοδομήσιμο κλάσμα των βιομηχανικών και αστικών αποβλήτων. Σύμφωνα με την ίδια οδηγία στην κατηγορία των βιοκαυσίμων εμπίπτουν η βιοαιθανόλη, το βιοντίζελ (μεθυλεστέρας λιπαρών οξέων), το βιοαέριο, η βιομεθανόλη, ο βιοδιμεθυλαιθέρας, ο βιο-ΕΤΒΕ (αιθυλοτριτοβουτυλαιθέρας, ο βιο-ΜΤΒΕ (μεθυλοτριτοβουτυλαιθέρας), τα συνθετικά βιοκαύσιμα (συνθετικοί υδρογονάνθρακες ή μείγματα συνθετικών υδρογονανθράκων που έχουν παραχθεί από βιομάζα), το βιοϋδρογόνο και τα καθαρά φυτικά έλαια. Επίσης η νομοθεσία προβλέπει ότι τα κράτη μέλη οφείλουν να διασφαλίσουν ότι μια ελάχιστη αναλογία βιοκαυσίμων και άλλων ανανεώσιμων καυσίμων διατίθεται στις αγορές τους, αναλογία η οποία για το 2005 ορίζεται στο 2 %, υπολογιζόμενη βάσει του ενεργειακού περιεχομένου, επί του συνόλου της βενζίνης και του πετρελαίου ντίζελ που διατίθεται στις αγορές τους προς χρήση στις μεταφορές. Η αναλογία αυτή οφείλει να αυξηθεί στο 5.75% έως το τέλος του 2010. Η Ελλάδα το καλοκαίρι του 2005 ενσωμάτωσε την οδηγία αυτή στην εθνική νομοθεσία. Η Ελλάδα δεν κατάφερε να επιτύχει το στόχο του 2% στο τέλος του 2005 ενώ αμφιβολίες εκφράζονται για το κατά πόσο θα επιτευχθεί και ο στόχος για το 2010.

Υφιστάμενη Κατάσταση[Επεξεργασία | επεξεργασία κώδικα]

Τα βιοκαύσιμα σταδιακά εξαπλώνονται στην Ευρωπαϊκή αγορά.Οι ετήσιες παραγωγές βιοαιθανόλης και βιοντίζελ για το 2005 παρουσιάζονται στην ακόλουθη εικόνα [2].

Παραπομπές[Επεξεργασία | επεξεργασία κώδικα]

  1. http://www.bionova.gr/bio/uploads/texts/nees_tasis26.pdf
  2. Austrian Biofuels Institute, 1997
  3. http://www.vakakis.gr/Background/VA/4_enimerosi/Arthra/pdfs/ENERGEIAKA%20FYTA.pdf
  4. Knothe G, Dunn RO, Bagby MO. Biodiesel: the use of vegetable oils and their derivatives as alternative diesel fuels. ACS Symp Ser 1997;666:172–208
  5. ChistiY. An unusual hydrocarbon. J Ramsay Soc 1980–81;27–28: 24–6
  6. Gavrilescu M, Chisti Y. Biotechnology—a sustainable alternative for chemical industry. Biotechnol Adv 2005;23:471–99
  7. Metting FB. Biodiversity and application of microalgae. J Ind Microbiol 1996;17:477 - 89
  8. Banerjee A, Sharma R, Chisti Y, Banerjee UC. Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 2002;22:245–79
  9. Nagle N, Lemke P. Production of methyl-ester fuel from microalgae.Appl Biochem Biotechnol 1990;24–5:355–61
  10. Rodolfi L, Zittelli CG, Bassi N, Padovani G, Biondi N, Biondi G, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low cost photobioreactor. Biotechnol Bioeng 2009;102(1):100–12
  11. Melis A. Green alga hydrogen production: progress, challenges and prospects. Int J Hydrogen Energy 2002;27:1217–28
  12. Borowitzka MA. Pharmaceuticals and agrochemicals from microalgae. In: Cohen Z, editor. Chemicals from microalgae. Taylor & Francis; 1999. p. 313–52
  13. Akkerman I, Janssen M, Rocha J, Wijffels RH. Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energy 2002;27:1195–208
  14. Melis A. Green alga hydrogen production: progress, challenges and prospects. Int J Hydrogen Energy 2002;27:1217–2
  15. Sánchez Mirón A, Cerón García M-C, Contreras Gómez A, García Camacho F, Molina Grima E, Chisti Y. Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 2003;16:287–97