Δευτεροβάθμια εξίσωση

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Πήδηση στην πλοήγηση Πήδηση στην αναζήτηση

Στα μαθηματικά, δευτεροβάθμια εξίσωση ονομάζεται κάθε πολυωνυμική εξίσωση δευτέρου βαθμού. Μερικές φορές αναφέρεται και ως τετραγωνική εξίσωση.

Η γενική μορφή μιας δευτεροβάθμιας εξίσωσης είναι:

όπου τα γράμματα α, β και γ παριστάνουν σταθερούς αριθμούς, με

Οι σταθερές α, β και γ ονομάζονται συντελεστές, με το α να είναι ο συντελεστής του x2, το β να είναι ο συντελεστής του x και γ ο σταθερός όρος. Οι συντελεστές μπορεί να είναι πραγματικοί ή μιγαδικοί αριθμοί.

Απόδειξη με συμπλήρωση τετραγώνου[Επεξεργασία | επεξεργασία κώδικα]

Θέλουμε να φέρουμε την εξίσωση στη μορφή ώστε να είναι πιο εύκολο να λυθεί.


Aρχικά εξετάζουμε τους όρους με x2 και x και τους χωρίζουμε από τη σταθερά γ:

Κατόπιν προσθαφαιρούμε στο αριστερό μέλος της εξίσωσης κατάλληλη σταθερά, ώστε να «συμπληρωθεί» το τετράγωνο:

και φέρνουμε τη σταθερά στο δεξί μέρος:

Φέρνουμε στο αριστερό μέρος όλα τα μεγέθη που μπορούν να γραφούν ως τετράγωνο:


Το δεξί μέρος της εξίσωσης ονομάζεται διακρίνουσα:


Οπότε έχουμε φέρει την εξίσωση στη μορφή που θέλουμε και συγκεκριμένα:

Αποτετραγωνίζοντας και τα δύο μέλη, έχουμε:


Από την προκύπτει, ότι η εξίσωση έχει πάντα δύο ρίζες, μία που περιέχει το και μία που περιέχει το Ανάλογα με την τιμή της διακρίνουσας διακρίνονται τρεις περιπτώσεις:

  • Αν , τότε προκύπτουν δύο διαφορετικές πραγματικές ρίζες:
  • Αν , τότε προκύπτουν δύο ρίζες, που εκφυλίζονται σε μια διπλή πραγματική ρίζα:
  • Αν , τότε η διακρίνουσα μπορεί να γραφεί ως , όπου η φανταστική μονάδα με και η απόλυτη τιμή της διακρίνουσας. Τώρα, η υπόριζη ποσότητα είναι μη αρνητική και επομένως ορίζεται στο σύνολο των μιγαδικών αριθμών. Επομένως, σε αυτή τη περίπτωση προκύπτουν δύο συζυγείς μιγαδικές ρίζες:


Από τα παραπάνω συνάγεται, ότι για να έχει η εξίσωση πραγματικές λύσεις, πρέπει να ισχύει , επειδή κάθε πραγματικός αριθμός υψωμένος στο τετράγωνο είναι μη αρνητικός (αριστερό μέρος της εξίσωσης 6), η διακρίνουσα (δεξί μέρος της εξίσωσης 6) πρέπει να είναι και αυτή μη αρνητικός αριθμός.

Οι τύποι του Βιέτ[Επεξεργασία | επεξεργασία κώδικα]

Οι τύποι του Βιέτ[1] ( Φρανσουά Βιέτ, François Viète) δίνουν απλές σχέσεις μεταξύ των ριζών ενός πολυωνύμου και των συντελεστών του. Στην περίπτωση των δευτεροβάθμιων εξισώσεων παίρνουν την ακόλουθη μορφή:

και

Αν συμβολίσουμε με το άθροισμα των ριζών μιας δευτεροβάθμιας εξίσωσης και με το γινόμενό τους τότε κάθε δευτεροβάθμια εξίσωση γράφεται και ως εξής:

όπου

και



  1. Ανδρεαδάκης κ.α., Σ. (1991). Άλγεβρα και Στοιχεία Πιθανοτήτων Α Λυκείου. Αθήνα: Οργανισμός Εκδόσεων Διδακτικών Βιβλίων, σελ. 90.