Πρωτόκολλα για δορυφορικές επικοινωνίες

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Πήδηση στην πλοήγηση Πήδηση στην αναζήτηση

Είναι γεγονός ότι για την επίτευξη της επικοινωνίας μέσω δορυφορικού δικτύου υπάρχει ανάγκη για την χρησιμοποίηση και τη δημιουργία διαφόρων προτύπων και πρωτοκόλλων. Πρέπει να θυμίσουμε ότι η επικοινωνία μέσω δορυφόρου γίνεται με τους transponders οι οποίοι εκπέμπουν μια δέσμη που καλύπτει την επικοινωνία για συγκεκριμένη περιοχή της γης (αυτή εξαρτάται από το είδος του δορυφόρου και κυμαίνεται από 250 km έως 10000 km). Ο χρόνος που η συγκεκριμένη δέσμη βλέπει την ίδια περιοχή λέγεται dwell time. Είναι ο χρόνος που οι γήινοι σταθμοί της συγκεκριμένης περιοχής μπορούν να στείλουν σήματα στο δορυφόρο.

Η επικοινωνία υφίσταται με τον παρακάτω τρόπο. Από τους επίγειους σταθμούς εκπέμπονται πλαίσια δεδομένων τα οποία μετατρέπονται σε σήματα (συγκεκριμένης συχνότητας) που φτάνουν στον transponder. Από εκεί ο δορυφόρος τα εκπέμπει στη γη σε άλλη συχνότητα και στον επίγειο σταθμό/ους (δέκτη/ες) μετατρέπονται σε πλαίσια δεδομένων.

Το πρόβλημα που υπάρχει και το οποίο αντιμετωπίζουν τα πρωτόκολλα είναι ο τρόπος με τον οποίο θα γίνει ο καταμερισμός των σημάτων που εκπέμπονται στα κανάλια επικοινωνίας που διαθέτει ο δορυφόρος (κάθε κανάλι υφίσταται μέσω transponder). Είναι γεγονός ότι κατά την επικοινωνία αν η καθυστέρηση διάδοσης του σήματος μεταξύ σταθμού και δορυφόρου είναι μεγαλύτερη των 270 msec (κάτι που είναι γεγονός στις δορυφορικές συνδέσεις) τότε υπάρχει πρόβλημα στην επικοινωνία και για αυτόν τον λόγο πρωτόκολλα όπως το CSMA/CD (τα οποία απαιτούν στο χρόνο μετάδοσης λίγων bits αναγνώριση πιθανών συγκρούσεων δεδομένων) δε μπορούν να χρησιμοποιηθούν σε δορυφορικές συνδέσεις. Πάντως τα περισσότερα προβλήματα υπάρχουν στην ανερχόμενη ζεύξη (όπου χρειάζεται καταμερισμός της ζήτησης για επικοινωνία στα διάφορα κανάλια του δορυφόρου - πολλοί πομποί) αφού στην κατερχόμενη υπάρχει μόνο ένας πομπός (μεταδότης σήματος), ο δορυφόρος.

Πέρα από το καταμερισμό των σημάτων σε κανάλια, υπάρχουν και άλλα είδη προβλημάτων που σχετίζονται με την καθυστέρηση στη μετάδοση του σήματος λόγω της απόστασης, με το μικρό εύρος συχνοτήτων και με τη δημιουργία θορύβου λόγω της αδύναμης πολλές φορές εκπομπής. Αυτά όλα προσπαθούν να αντιμετωπίσουν τα πρωτόκολλα στο επίπεδο ζεύξης δεδομένων (Data Link Layer).

Έτσι στο 2ο επίπεδο του OSI μοντέλου (Data Link Layer) και πιο συγκεκριμένα στο υποεπίπεδο MAC (Media Access Sublayer, Media Access Control) εξαιτίας της μετάδοσης των σημάτων από τον δορυφόρο με εκπομπή, είναι απαραίτητη η ύπαρξη πρωτοκόλλων διαμοιρασμού της επικοινωνίας και των σημάτων. Τα περισσότερα από αυτά συνήθως χρησιμοποιούν μοναδιαία είτε κανάλια είτε συχνότητες για κάθε χρήστη την ώρα της επικοινωνίας. Και αυτό γιατί η διερεύνηση και επίλυση των διαφόρων συγκρούσεων δεδομένων γίνεται με καθυστέρηση κατά διάρκεια της μετάδοσης.

α. Polling[Επεξεργασία | επεξεργασία κώδικα]

O πρώτος παραδοσιακός τρόπος επίτευξης της επικοινωνίας είναι η διερεύνηση με κάποιο τρόπο της ανάγκης για εξυπηρέτηση από το δορυφόρο του κάθε σταθμού. Απευθείας (από το δορυφόρο) αυτό δε γίνεται (αρκετά ακριβό στην υλοποίηση) αν συμπεριλάβουμε και το γεγονός ότι υπάρχει δεδομένη καθυστέρηση στη διάδοση των σημάτων (μέσω του καναλιού επικοινωνίας με το δορυφόρο) αλλά και στην διαδικασία αναγνώρισης της ανάγκης του κάθε επίγειου σταθμού για επικοινωνία από το δορυφόρο.

Η λύση είναι η δημιουργία ενός χαμηλού εύρους δικτύου μεταξύ όλων των σταθμών με μορφή λογικού δακτυλίου όπου ένα κουπόνι θα διευθετεί ποιος σταθμός θα μπορεί να μεταδώσει σήμα μέσω της ανερχόμενης ζεύξης στον δορυφόρο. Η παραπάνω υλοποίηση με συγκεκριμένο πρωτόκολλο είναι ικανοποιητική όταν οι σταθμοί που συνδέονται στο δίκτυο είναι τόσοι ώστε ο χρόνος διερεύνησης από το κουπόνι της ζήτησης για επικοινωνία από τον κάθε σταθμό (ένας κύκλος) θα είναι πιο μικρός από το χρόνο μετάδοσης του σήματος από τη γη στο δορυφόρο.

β. ALOHA[Επεξεργασία | επεξεργασία κώδικα]

Το απλό ALOHA, όπου κάθε σταθμός στέλνει όποια στιγμή θέλει, είναι εύκολο στην υλοποίηση αλλά η αποδοτικότητα του καναλιού (επίτευξη μετάδοσης των δεδομένων) φτάνει το 18%.

Χρησιμοποιώντας το S-ALOHA διπλασιάζεται η αποδοτικότητα αλλά υπάρχει πρόβλημα στο συγχρονισμό των σταθμών για το πότε μπορεί ο καθένας να "μιλήσει". Λύση σε αυτό είναι ο ίδιος ο δορυφόρος ο οποίος όντας μέσο ευρείας μετάδοσης (εκπομπής σε πολλούς σταθμούς) επιτυγχάνει συγχρονισμό αυτών χρησιμοποιώντας τμήματα ισόχρονα για τη λήψη και μετάδοση των σημάτων.

Το S-ALOHA αποδοτικό όταν εξυπηρετούνται από ένα δορυφόρο λίγοι και σταθεροί επίγειοι σταθμοί.

γ. FDMA (Frequency Division Multiple Access)[Επεξεργασία | επεξεργασία κώδικα]

Το διαθέσιμο εύρος ζώνης του καναλιού μετάδοσης μοιράζεται σε τμήματα συχνοτήτων για τους διάφορους γήινους σταθμούς (ένας σταθμός εκπέμπει και δέχεται σε ένα τμήμα του εύρους ζώνης των συχνοτήτων).

Η δέσμη κάθε transponder η οποία είναι συνήθως 36Mbps μοιράζεται σε 500 PCM κανάλια από 64Kbps το καθένα, το οποίο και εκπέμπει στη δική του συχνότητα. Πρόβλημα σε αυτήν τη διαδικασία μετάδοσης είναι η αναγκαστική ύπαρξη ενδιαμέσων τμημάτων συχνοτήτων τα οποία δε θα χρησιμοποιούνται για την ασφάλεια της μετάδοσης, αλλά και ο έλεγχος των συχνοτήτων που εκπέμπει ο κάθε σταθμός ώστε να εκπέμπει στη δική του συχνότητα. Τέλος επειδή το FDMA είναι μια καθαρά αναλογική τεχνική δεν μπορεί να αντιμετωπισθεί με λογισμικό.[1]

Ο διαμοιρασμός των συχνοτήτων στους επίγειους σταθμούς όταν αυτοί είναι λίγοι γίνεται στατικά. αν όμως αυτοί είναι πολλοί τότε χρειάζεται δυναμικός τρόπος όπως ο μηχανισμός SPADE που χρησιμοποιείται στους Intelsat.

Kάθε transponder με εύρος ζώνης 50 Mbps μοιράζεται σε 794 απλά PCM κανάλια (ανά δύο χρησιμοποιούνται για ταυτόχρονης διπλής κατεύθυνσης επικοινωνία) μαζί με ένα κοινό κανάλι σηματοδότησης 128Κbps (αυτό μοιράζεται σε τμήματα από 50 msec όπου το κάθε τμήμα περιέχει διατομές του ενός msec(128 bits), κάθε διατομή (σύνολο 50) την χρησιμοποιεί ένας επίγειος σταθμός).

Όταν ένας σταθμός θέλει να επικοινωνήσει επιλέγει ένα διαθέσιμο κανάλι και τον αριθμό του τον γράφει στην επόμενή αυτού διατομή. Όταν το σήμα βρίσκονταν στην κατερχόμενη ζεύξη τότε το κανάλι μπορούσε να το χρησιμοποιήσει άλλος σταθμός. Αν το ίδιο κανάλι το ζητούσαν δύο σταθμοί τότε υπήρχε σύγκρουση και έπρεπε να ζητήσουν άλλο κανάλι αργότερα. Η απελευθέρωση ενός καναλιού μετά από το πέρας της επικοινωνίας την οποία ζήτησε ένας σταθμός γίνεται με σήμα από αυτόν προς του άλλους μέσα από το κοινό κανάλι στη διατομή που αντιστοιχεί σε αυτόν το σταθμό. Το πρωτόκολλο αυτό είναι πεπερασμένο αν και έχει χρησιμοποιηθεί πάρα πολύ.

δ. ΤDMA (Time Division Multiple Access)[Επεξεργασία | επεξεργασία κώδικα]

Σε αυτήν τη μέθοδο η διαχείριση των καναλιών γίνεται με χρονική πολυπλεξία. Κάθε επίγειος σταθμός μεταδίδει σε ένα προκαθορισμένο χρόνο. Περισσότερες της μιας διατομές μπορούν να σχετίζονται με ένα σταθμό σε συγκεκριμένες συχνότητες. Οι υπόλοιποι σταθμοί παρακολουθούν τη διαδικασία αυτή ώστε να βρουν το κατάλληλο κανάλι επικοινωνίας και αναγνωρίζουν ποια σήματα αφορούν αυτούς. Αυτή η μέθοδος απαιτεί συγχρονισμό μεταξύ των επίγειων σταθμών (η οποία επιτυγχάνεται από έναν από αυτούς μέσω του δορυφόρου, Master Control Station). Ο συγχρονισμός επιτυγχάνεται με τον ίδιο τρόπο όπως στο SALOHA. Σ` αυτή τη μέθοδο υπάρχει δυνατότητα επαναχρησιμοποίησης των συχνοτήτων και των καναλιών από εκείνους τους σταθμούς που ζητούν ακρόαση για επικοινωνία. Όπως στην FDMA, όταν ο δορυφόρος είναι να εξυπηρετήσει λίγους επίγειους σταθμούς, τότε η ρύθμιση των συχνοτήτων και των καναλιών επικοινωνίας μεταξύ σταθμών και δορυφόρου είναι στατική. Όταν όμως οι σταθμοί είναι περισσότεροι τότε χρειάζεται δυναμικός διαμοιρασμός των καναλιών επικοινωνίας στη ζήτηση για αυτές. Υπάρχουν τρία είδη διατάξεων δυναμικού διαμοιρασμού των καναλιών όπου πλαίσια TDM μοιράζονται σε διατομές (η κάθε διατομή μεταφέρει πακέτα δεδομένων συγκεκριμένου χρήστη) κάθε μια των οποίων έχει έναν ιδιοκτήτη.

Στην πρώτη διάταξη (Binder) υπάρχουν περισσότερες διατομές από σταθμούς. Κάθε σταθμός κατέχει μια. Αν ο ιδιοκτήτης μιας διατομής κατά ένα πλαίσιο μετάδοσης δε θέλει να στείλει σήμα η διατομή του φεύγει κενή και ταυτόχρονα μ` αυτό το γεγονός ενημερώνονται οι υπόλοιποι σταθμοί ότι υπάρχει διαθέσιμη η προηγούμενη διατομή προς χρησιμοποίηση. Οπότε στο επόμενο πλαίσιο μπορεί να χρησιμοποιηθεί αυτή από κάποιον άλλο σταθμό. Όταν ο ιδιοκτήτης θέλει να επικοινωνήσει προκαλεί σύγκρουση οπότε στο επόμενο πλαίσιο μπορεί να χρησιμοποιήσει τη διατομή του για μετάδοση αφού ο σταθμός που χρησιμοποιούσε αυτή περιμένει ένα πλαίσιο μετάδοσης για να δει αν την χρειάζεται ο ιδιοκτήτης.

Στη δεύτερη διάταξη (Crowther) οι σταθμοί ανταγωνίζονται τυχαία για τις διατομές αφού δεν υπάρχουν ιδιοκτήτες γι` αυτές. Όταν ένας σταθμός μεταδώσει τότε στο επόμενο πλαίσιο, αφού έχει δεδομένα προς μετάδοση μπορεί να χρησιμοποιήσει τη διατομή που από τον ανταγωνισμό "κέρδισε" και με την οποία άρχισε να υλοποιεί τη μετάδοσή του. Μόλις τελειώσει τη μετάδοση μετά από ένα πλαίσιο μπορεί κάποιος άλλος να χρησιμοποιήσει την ίδια διατομή. Η συγκεκριμένη διάταξη είναι ένας συνδυασμός S-ALOHA και TDMA.

Στη τρίτη διάταξη (Roberts) υπάρχει μια διατομή η οποία υποδιαιρείται σε μικρότερες και μέσω αυτών γίνεται από κάθε σταθμό κράτηση για μια διατομή ώστε να εκπέμψει. Στην περίπτωση που πετύχει η κράτηση στο επόμενο πλαίσιο μετάδοσης ο σταθμός μπορεί να εκπέμψει. Ανάλογα με τον αριθμό των υποδιατομών για κράτηση ο κάθε σταθμός γνωρίζει πόσο πρέπει να περιμένει για την εκπομπή του σήματός του.

Παράδειγμα με σύστημα ανάθεσης και διανομής των χρονικών διατομών σε κάθε σταθμό για επικοινωνία είναι το ACTS (Advanced Communication Technology Satellite) της ΝASA, αλλά και το Ιtalsat του Ιταλικού Ερευνητικού Συμβουλίου. Το σημαντικό στοιχείο του ACTS είναι ότι συγκεντρώνοντας την ενέργεια του σήματος δίνει τη δυνατότητα για μετάδοση από πιο ασθενείς (σε ισχύ) γήινους σταθμούς μετάδοσης. Το ACTS τέθηκε σε τροχιά το 1992 και αποτελείται από 4 ανεξάρτητα TDMA κανάλια των 110 Μbps με δύο ανερχόμενες και δύο κατερχόμενες ζεύξεις (είναι οργανωμένο το κάθε κανάλι σε πλαίσια του 1 msec με 1728 διατομές το κάθε πλαίσιο, η κάθε διατομή μπορεί να φέρει 64 bits). Τον συγχρονισμό για την επικοινωνία των σταθμών που βρίσκονται σε διαφορετικές γεωγραφικές περιοχές μέσω του δορυφόρου αλλά και την αντιμετώπιση των καθυστερήσεων αλλά και του ορίου που θέτει ο dwell time πετυχαίνει ο MCS.

Η διαδικασία γίνεται σε τρία στάδια:

  1. είσοδος του πλαισίου με τα δεδομένα στο δορυφόρο και αποθήκευσή του σε ενσωματωμένη RAM
  2. αντιγραφή των εισόδων σε εξόδους
  3. αποστολή των πλαισίων

Κάθε σταθμός κατέχει μια διατομή για μετάδοση. Στην περίπτωση που θέλει να στείλει σήμα στον δορυφόρο επικοινωνεί με τον MCS για να πάρει σειρά προτεραιότητας. Λειτουργεί στις ζώνες συχνοτήτων K (20 GHz) και Ka (30 GHz).

ε. CDMA (Code Division Multiple Access)[Επεξεργασία | επεξεργασία κώδικα]

Είναι μια διασταύρωση πολυπλεξίας χρόνου/συχνότητας και είναι μια μορφή εκτεταμένου φάσματος επικοινωνίας. Προσφέρει αποκεντρωμένη παροχή καναλιών για επικοινωνία στην υπάρχουσα για αυτή ζήτηση χωρίς χρονικό συγχρονισμό. Είναι μια μέθοδος η οποία τελευταία αρχίζει να χρησιμοποιείται.

Κάθε χρήστης έχει μοναδιαίο κωδικό μετάδοσης μηνυμάτων, ο οποίος είναι ορθογώνιος στους κωδικούς των άλλων χρηστών (σταθμοί μετάδοσης/λήψης σημάτων). Το σήμα που τελικά θα σταλεί από τον πομπό είναι αποτέλεσμα του εισερχόμενου σήματος (δεδομένα) και του κωδικού διάδοσης.

Στον παραλήπτη το εισερχόμενο σήμα συσχετίζεται με το κωδικό μετάδοσης του δέκτη και αν τα δεδομένα είναι για αυτόν ανακτώνται ειδάλλως μετατρέπονται σε θόρυβο.

Τα πλεονεκτήματα της συγκεκριμένης μεθόδου εξυπηρέτησης της ζήτησης για επικοινωνία είναι τα εξής:

  • κάθε χρήστης μεταδίδει δεδομένα οποιαδήποτε στιγμή θέλει χωρίς παρεμβολές από άλλους χρήστες
  • ο κωδικός μετάδοσης ορίζει και πιστοποιεί τον πομπό χωρίς να είναι απαραίτητη περαιτέρω πληροφορία
  • ύπαρξη ασφάλειας στη μετάδοση
  • επαναχρησιμοποίηση των ίδιων συχνοτήτων σε προκαθορισμένες δέσμες από αυτές του δορυφόρου αναθέτοντας διαφορετικούς κωδικούς μετάδοσης στους χρήστες

Τα μειονεκτήματα της συγκεκριμένης είναι τα εξής:

  • μειωμένη χωρητικότητα μικρότερη από το TDMA λόγω του θορύβου και της έλλειψης του συντονισμού στους σταθμούς μετάδοσης
  • είναι δυσκολονόητη η λειτουργία του
  • γίνεται πιο αποδοτικό όταν ο αριθμός των χρηστών μεγαλώνει αφού ταυτόχρονα το BER μειώνεται

Παραπομπές[Επεξεργασία | επεξεργασία κώδικα]

  1. Σωμαράς Χρήστος, Αρχιτεκτονική και διαχείριση των δορυφορικών δικτύων και επικοινωνιών 17