Γεωμετρική πρόοδος

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Μετάβαση σε: πλοήγηση, αναζήτηση

Γεωμετρική πρόοδος είναι η ακολουθία , στην οποία κανένας όρος δεν ισούται με το μηδέν και για δύο διαδοχικούς όρους της αν, αν+1 ισχύει ότι \frac{\alpha_{\nu+1}}{\alpha_{\nu}}=\lambda, όπου λ μία μη μηδενική σταθερή ποσότητα. Η ποσότητα λ ονομάζεται λόγος της γεωμετρικής προόδου. Αντίστροφα, αποδεικνύεται ότι, αν το οποιοδήποτε πηλίκο δύο διαδοχικών όρων μιας ακολουθίας είναι συγκεκριμένο, τότε αυτή η ακολουθία είναι γεωμετρική πρόοδος. Έτσι, όπως πολλές ακολουθίες, έχει δύο τύπους:

  • Γενικός τύπος: αν1·λν-1
  • Αναδρομικός τύπος: ανν-1·λ

Ιδιότητες της προόδου[Επεξεργασία | επεξεργασία κώδικα]

Γραφική παράσταση αύξουσας γεωμετρικής προόδου.
  • Ο γεωμετρικός μέσος όρος δύο αριθμών α,γ είναι ο β, αν και μόνο αν οι όροι α, β, γ είναι διαδοχικοί όροι γεωμετρικής προόδου.
Απεικόνιση της περατότητας της σειράς γεωμετρικής προόδου με λ=1/2. Το κάθε επιμέρους εμβαδόν αντιστοιχεί σε έναν όρο της γεωμετρικής προόδου, ενώ το συνολικό εμβαδόν αντιστοιχεί στη σειρά, με άθροισμα 2.
  • Αν το λ δεν είναι 1:
    • Το άθροισμα των ν πρώτων όρων της γεωμετρικής προόδου (αν) ( με πρώτον όρο τον α1) ισούται με \Sigma_\nu=\alpha_1\frac{\lambda^{\nu}-1}{\lambda-1}
      • Αν η πρόοδος είναι φθίνουσα (|\lambda|<1), τότε η σειρά των όρων της γεωμετρικής προόδου (δηλαδή το διαδοχικό άθροισμα των άπειρων όρων της) που έχει πρώτο όρο τον αριθμό α1 και λόγο λ, δίνεται από τον τύπο: \frac{\alpha_1}{1-\lambda}
  • Αν λ=1, τότε όλοι οι όροι της γεωμετρικής προόδου είναι ίσοι μεταξύ τους και το άθροισμα ν όρων είναι v·α1.
  • Αν λ=-1, τότε όλοι οι όροι της γεωμετρικής προόδου έχουν ίδια απόλυτη τιμή και το άθροισμα ν όρων είναι α1, αν ν περιττός αριθμός και 0 αν ν άρτιος αριθμός.