Κύρια διαγώνιος πινάκων

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια

Στη γραμμική άλγεβρα, η κύρια (ή αλλιώς πρωτεύουσα) διαγώνιος ενός πίνακα  είναι η συλλογή των καταχωρήσεων για .[1]:34[2]:177[3]:14[4]:7 Για παράδειγμα, παρακάτω υποδεικνύονται με κόκκινο οι κύριες διαγώνιοι για τέσσερις πιθανές διαστάσεις πινάκων:

και για συγκεκριμένους πίνακες, π.χ. τους ταυτοτικούς πίνακες αντίστοιχων διαστάσεων:

Αντιδιαγώνιος[Επεξεργασία | επεξεργασία κώδικα]

Η αντιδιαγώνιος (ή αλλιώς δευτερεύουσα διαγώνιος) ενός τετραγωνικού πίνακα  διάστασης είναι η συλλογή των καταχωρήσεων , δηλαδή όλων των με για .[2]:177[3]:14 Δηλαδή ξεκινάει από την επάνω δεξιά γωνία και συνεχίζει διαγώνια ως την κάτω αριστερή γωνία. Για παράδειγμα, παρακάτω υποδεικνύονται με κόκκινο οι αντιδιαγώνιοι για :

και για συγκεκριμένους πίνακες:

Δείτε επίσης[Επεξεργασία | επεξεργασία κώδικα]

Πηγές[Επεξεργασία | επεξεργασία κώδικα]

  1. Χαραλάμπους, Χ.· Φωτιάδης, Α. (2015). Μία εισαγωγή στη γραμμική άλγεβρα για τις θετικές επιστήμες. Αθήνα: ΣΕΑΒ. ISBN 978-960-603-273-8. 
  2. 2,0 2,1 Μπράτσος, Α. (2015). Μαθήματα ανωτέρων μαθηματικών. Αθήνα: ΣΕΑΒ. ISBN 978-960-603-030-7. 
  3. 3,0 3,1 Βασιλειάδης, Π. (1983). Στοιχειώδης γραμμική άλγεβρα: Θεωρία, μεθοδολογία, παραδείγματα, ασκήσεις. Θεσσαλονίκη. 
  4. Βουκούτης, Ν. Εισαγωγή στη γραμμική άλγεβρα: Πίνακες, Ορίζουσες, Γραμμικά συστήματα για τις πανελλήνιες εξετάσεις β' λυκείου. Αθήνα: Δημόκριτος.