Κλίση συνάρτησης

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Μετάβαση σε: πλοήγηση, αναζήτηση

Η γενική διατύπωση γραμμικών συναρτήσεων είναι . Η κλίση μιας γραμμικής συνάρτησης (δηλ. μιας ευθείας) είναι

Η κλίση μιας γραμμικής συνάρτησης.

για δύο οποιαδήποτε σημεία , όταν διάφορο .Αν Τότε ΔΕΝ ορίζεται κλίση ευθείας .

Η κλίση μιας μη γραμμικής συνάρτησης.

Σε μη γραμμικές συναρτήσεις, π.χ. καμπύλες στο δισδιάστατο χώρο (ως παραστατική περίπτωση) η κλίση ποικίλλει. Ένας τρόπος για να οριστεί η κλίση μιας (μη γραμμικής) συνάρτησης σε κάποιο σημείο είναι να ταυτιστεί η κλίση της συνάρτησης στο σημείο με την κλίση της εφαπτομένης που έρχεται σε επαφή με την συνάρτηση στο συγκεκριμένο σημείο. Η επόμενη ερώτηση είναι λοιπόν πώς να υπολογιστεί η κλίση της εφαπτομένης. Είναι εύκολο να κατανοηθεί ότι αν επιλεχτεί ένα σημείο κοντά στο η τέμνουσα που διέρχεται από τα σημεία και έχει περίπου την ίδια κλίση με την εφαπτόμενη. Η κλίση της τέμνουσας είναι

Το παραπάνω κλάσμα ονομάζεται μέσος ρυθμός μεταβολής. Όσο πλησιέστερα επιλεχτεί το σημείο στο σημείο , τόσο καλύτερη είναι η προσέγγιση της κλίσης της εφαπτομένης. Η άπειρη προσέγγιση του σημείου στο σημείο και μαζί της ο υπολογισμός της κλίσης της εφαπτομένης εκφράζεται στα μαθηματικά ως ακολούθως

ονομάζεται παράγωγος της συνάρτησης στο σημείο . Επίσης μπορεί να ειπωθεί πως η παράγωγος είναι το όριο του μέσου ρυθμού μεταβολής εάν το τείνει στο . Αν αυτό το όριο υπάρχει τότε η συνάρτηση ονομάζεται διαφορίσιμη, αν όχι, μη διαφορίσιμη.