Θεώρημα Μπράουερ-Σουζούκι

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Μετάβαση σε: πλοήγηση, αναζήτηση

Στα μαθηματικά, το Θεώρημα Μπράουερ-Σουζούκι αποδείχθηκε από τους Brauer & Suzuki, αναφέρεται στο ότι αν μια πεπερασμένη ομάδα έχει μια γενικευμένη quaternion Sylow 2-υποομάδα και όχι μη-τετριμμένες κανονικές υποομάδες περιττών τάξεων, τότε η ομάδα έχει ένα κέντρο τάξης 2. Ειδικότερα, η εν λόγω ομάδα δεν μπορεί να είναι απλή.

Μια γενίκευση του θεώρηματος Μπράουερ–Suzuki δίνεται από το θεώρημα Glauberman Z*.

Αναφορές[Επεξεργασία | επεξεργασία κώδικα]