Θεώρηµα Μπολζάνο-Βάιερστρας
Εμφάνιση
Το λήμμα δεν περιέχει πηγές ή αυτές που περιέχει δεν επαρκούν. |
Το θεώρηµα Μπολζάνο-Βάιερστρας ονομάστηκε έτσι προς τιμήν των Μπέρναρντ Μπολζάνο και Καρλ Βάιερστρας.
Δηλώνει ότι σε κάθε φραγμένη ακολουθία πραγματικών αριθμών μπορούμε πάντα να εξαγάγουμε μία συγκλίνουσα υπακολουθία.
Το θεώρημα είναι αρκετά σημαντικό καθώς χρησιμοποιείται πλέον για να αποδειχτούν με ευκολία άλλα θεωρήματα, παίρνοντας κατά κάποιον τρόπο επάνω του την αρχική δυσκολία στην απόδειξη.[1]
Ιστορία
[Επεξεργασία | επεξεργασία κώδικα]Το θεώρημα αποδείχτηκε για πρώτη φορά το 1817 από τον Τσέχο μαθηματικό Μπολζάνο. Για πενήντα περίπου χρόνια δεν θεωρήθηκε αρκετά σημαντικό. Ο Γερμανός Βάιερστρας όμως το ανακάλυψε ξανά και το απόδειξε πάλι.
Παραπομπές
[Επεξεργασία | επεξεργασία κώδικα]- ↑ Rachunek różniczkowy i całkowy (στα Πολωνικά) (6η έκδοση). Warszawa: PWN. 1980. ISBN 83-01-02175-6 t.1 (83-01-02174-8 t.1-3). Unknown parameter
|name=
ignored (βοήθεια) σελ. 74
Αυτό το μαθηματικό λήμμα χρειάζεται επέκταση. Μπορείτε να βοηθήσετε την Βικιπαίδεια επεκτείνοντάς το. |