Στοχαστική διαφορική εξίσωση

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Πήδηση στην πλοήγηση Πήδηση στην αναζήτηση

Στοχαστική διαφορική εξίσωση λέγεται η διαφορική εξίσωση στην οποία ένας ή περισσότεροι όροι είναι στοχαστικές διαδικασίες, που σημαίνει ότι η λύση είναι και η ίδια στοχαστική διαδικασία. Για παράδειγμα η εξίσωση dXt=b(t,Xt)dt+σ(t,Xt)dWt όπου Wt μια m-διάστατη κίνηση Brown, αποτελεί μια στοχαστική διαφορική εξίσωση. Ο πρώτος όρος είναι ένας όρος τάσης και αποτελεί το ντετερμινιστικό μέρος της εξίσωσης και το δεύτερο άθροισμα αποτελεί το όρο διάχυσης και είναι μια στοχαστική διαδικασία. Μια στοχαστική διαφορική εξίσωση έχει λύση αν υπάρχει διαδικασία Ito Xt που την ικανοποιεί.

Αν οι b, σ είναι ανεξάρτητες του χρόνου τότε οι λύσεις των εξισώσεων αυτής της μορφής λέγονται διαδικασίες διάχυσης.


Στοχαστικές διαφορικές εξισώσεις χρησιμοποιούνται για την μοντελοποίηση συστημάτων και φαινομένων που περιέχουν κάποιου είδους τυχαιότητας. Τέτοια προβλήματα προκύπτουν σε πολλά φυσικά φαινόμενα και σε θέματα οικονομικών (μοντελοποίηση μετοχών, μοντέλα επιτοκίων στα χρηματοοικονομικά).


Βιβλιογραφία[Επεξεργασία | επεξεργασία κώδικα]

  • Α.Ν.Γιαννακόπουλος (2003). «Στοχαστική Ανάλυση και Εφαρμογές στη Χρηματοοικονομική».  H παράμετρος |url= είναι κενή ή απουσιάζει (βοήθεια)