Μετάβαση στο περιεχόμενο

Χρήστης:Gts-tg/πρόχειρο: Διαφορά μεταξύ των αναθεωρήσεων

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Περιεχόμενο που διαγράφηκε Περιεχόμενο που προστέθηκε
Gts-tg (συζήτηση | συνεισφορές)
Διαγραφή όλου του περιεχομένου της σελίδας
Gts-tg (συζήτηση | συνεισφορές)
Χωρίς σύνοψη επεξεργασίας
Γραμμή 1: Γραμμή 1:
[[File:Arecibo message.svg|thumb|upright|A graphical representation of the [[Arecibo message]]—Humanity's first attempt to use radio waves to actively communicate its existence to alien civilizations ]]

The '''Fermi paradox''' or '''Fermi's paradox''', named after physicist [[Enrico Fermi]], is the apparent contradiction between the lack of [[evidence]] and high [[probability]] estimates, e.g., those given by the [[Drake equation]], for the existence of [[extraterrestrial life|extraterrestrial]] civilizations.<ref name=":0">{{cite news
|last=Krauthammer |first=C.
|date=December 29, 2011
|title=Are we alone in the universe?
|url=http://www.washingtonpost.com/opinions/are-we-alone-in-the-universe/2011/12/29/gIQA2wSOPP_story.html
|work=[[The Washington Post]]
|accessdate=January 6, 2015
}}</ref> The basic points of the argument, made by [[physicists]] [[Enrico Fermi]] (1901–1954) and [[Michael H. Hart]] (born 1932), are:
* There are billions of stars in the [[galaxy]] that are similar to the [[Sun]],<ref>{{cite web |url=http://www.britannica.com/topic/star-astronomy |title=Star (astronomy) |publisher=Encyclopædia Britannica}} "With regard to mass, size, and intrinsic brightness, the Sun is a typical star." Technically, the sun is near the middle of the main sequence of the [[Hertzsprung-Russell diagram]]. This sequence contains 80–90% of the stars of the galaxy. [http://astro.unl.edu/naap/hr/hr_background3.html]</ref><ref>{{cite news |last1=Grevesse |first1=N. |last2=Noels |first2=A. |last3=Sauval |first3=A. J. |url=http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1996ASPC...99..117G&defaultprint=YES&filetype=.pdf |title=Standard abundances |journal=ASP Conference Series |volume=99 |year=1996 |quote=The Sun is a normal star, though dispersion exists.}}</ref> many of which are billions of years older than Earth.<ref>{{cite book |title=The Living Cosmos: Our Search for Life in the Universe |author=Chris Impe |publisher=Cambridge University Press |date=2011 |isbn=978-0-521-84780-3}}, page 282.</ref><ref>{{Cite journal|author1=Aguirre, V. Silva |author2=G. R. Davies|author3= S. Basu |author4=J. Christensen-Dalsgaard |author5= O. Creevey |author6=T. S. Metcalfe |author7= T. R. Bedding |title=Ages and fundamental properties of Kepler exoplanet host stars from asteroseismology. |journal=Monthly Notices of the Royal Astronomical Society |volume=452 |issue=2 |pages=2127 |date=2015 |arxiv=1504.07992|display-authors=etal|doi=10.1093/mnras/stv1388 |bibcode=2015MNRAS.452.2127S }} Accepted for publication in MNRAS. See Figure 15 in particular.</ref>
* With high probability, some of these stars will have [[Earth]]-like planets,<ref>{{cite journal
|last=Schilling |first=G.
|date=June 13, 2012
|url=http://news.sciencemag.org/2012/06/scienceshot-alien-earths-have-been-around-while
|title=ScienceShot: Alien Earths Have Been Around for a While
|journal=[[Science (journal)|Science]]
|doi=
|pmid=
|accessdate=January 6, 2015
}}</ref><ref>{{cite journal
|last=Buchhave |first=L. A.
|displayauthors=etal
|date=June 21, 2012
|title=An abundance of small exoplanets around stars with a wide range of metallicities
|journal=[[Nature (journal)|Nature]]
|volume=486 |issue= |pages=375
|bibcode= 2012Natur.486..375B
|doi=10.1038/nature11121
|pmid=22722196
}}</ref> and if the Earth is typical, some might develop [[human intelligence|intelligent]] life.
* Some of these [[civilization]]s might develop [[interstellar travel]], a step the Earth is investigating now.
* Even at the slow pace of currently envisioned interstellar travel, the [[Milky Way|Milky Way galaxy]] could be completely traversed in a few million years.<ref name="Hart">{{cite journal
| title = Explanation for the Absence of Extraterrestrials on Earth
| last = Hart
| first = Michael H.
| journal = [[Quarterly Journal of the Royal Astronomical Society]]
| volume = 16 | pages = 128–135
| date = 1975
| bibcode=1975QJRAS..16..128H
| url=http://adsabs.harvard.edu/full/1975QJRAS..16..128H
}}</ref>
According to this line of reasoning, the Earth should have already been visited by extraterrestrial aliens. In an informal conversation, Fermi noted no convincing evidence of this, leading him to ask, "Where is everybody?"<ref name="OSTI-19850301">{{cite web
|last=Jones |first=E. M.
|title="Where is everybody?" An account of Fermi's question"
|url=http://www.osti.gov/accomplishments/documents/fullText/ACC0055.pdf
|date=March 1, 1985
|publisher=[[Los Alamos National Laboratory]]
|osti=785733
|accessdate=January 12, 2013
}}</ref><ref name="NYT-20150803">{{cite news |last=Overbye |first=Dennis |authorlink=Dennis Overbye |title=The Flip Side of Optimism About Life on Other Planets |url=https://www.nytimes.com/2015/08/04/science/space/the-flip-side-of-optimism-about-life-on-other-planets.html |date=August 3, 2015 |work=[[The New York Times]] |accessdate=October 29, 2015 }}</ref> There have been many attempts to explain the Fermi paradox,<ref>{{cite book |last=Webb |first=Stephen |title=If the Universe Is Teeming with Aliens... Where Is Everybody? Seventy five Solutions to the Fermi Paradox and the Problem of Extraterrestrial Life |edition=2nd |publisher=Copernicus Books |date = 2015 |isbn = 978-3-319-13235-8 |url=https://books.google.com/books?id=QWKyrQEACAAJ |ref=harv}}</ref><ref>{{cite news |url = http://www.huffingtonpost.com/wait-but-why/the-fermi-paradox_b_5489415.html| title = The Fermi Paradox |last = Urban| first = Tim| date = June 17, 2014| work = Huffington Post| access-date = January 6, 2015}}</ref> primarily either suggesting that intelligent extraterrestrial life is extremely rare or proposing reasons that such civilizations have not contacted or visited Earth.
{{TOC limit|limit=3}}
[[File:Enrico Fermi 1943-49.jpg|thumb|240px|Enrico Fermi (1901–1954)]]

== Basis ==
The Fermi [[paradox]] is a conflict between arguments of [[scale (spatial)|scale]] and [[probability]] that seem to favor intelligent life being common in the universe, and a total lack of [[evidence]] of intelligent life having ever arisen anywhere other than on the Earth.

The first aspect of the Fermi paradox is a function of the scale or the large numbers involved: there are an estimated 200–400 billion stars in the Milky Way<ref>{{cite news |last=Cain |first=Fraser |url=http://www.universetoday.com/102630/how-many-stars-are-there-in-the-universe/ |title=How Many Stars are There in the Universe? |work=Universe Today |date=June 3, 2013 |accessdate=2016-05-25 }}</ref> (2–4 × [[orders of magnitude|10<sup>11</sup>]]) and 70 sextillion (7×10<sup>22</sup>) in the [[observable universe]].<ref>{{cite news|url = http://news.bbc.co.uk/1/hi/sci/tech/3085885.stm|title = Astronomers count the stars |publisher = BBC News |accessdate = April 8, 2010|author=Craig, Andrew |date=July 22, 2003}}</ref> Even if intelligent life occurs on only a minuscule percentage of planets around these stars, there might still be a great number of extant civilizations, and if the percentage were high enough it would produce a significant number of extant civilizations in the Milky Way. This assumes the [[mediocrity principle]], by which the Earth is a typical [[planet]].

The second aspect of the Fermi paradox is the argument of probability: given intelligent life's ability to overcome scarcity, and its tendency to colonize new [[habitat (ecology)|habitats]], it seems possible that at least some civilizations would be technologically advanced, seek out new resources in space, and colonize their own [[star system]] and, subsequently, surrounding star systems. Since there is no significant evidence on Earth or elsewhere in the known universe of other intelligent life after 13.8&nbsp;billion years of the universe's history, then there is a conflict requiring a resolution. Some examples of possible resolutions are that intelligent life is rarer than we think, that our assumptions about the general development or behavior of intelligent species are flawed, or, more radically, that our current scientific understanding of the nature of the universe itself is quite incomplete.

The Fermi paradox can be asked in two ways.<ref>See Hart for an example of "no aliens are here", and Webb for an example of the more general "We see no signs of intelligence anywhere".</ref> The first is, "Why are no aliens or their artifacts found here on Earth, or in the Solar System?" If [[interstellar travel]] is possible, even the "slow" kind nearly within the reach of Earth technology, then it would only take from 5 million to 50&nbsp;million years to colonize the galaxy.<ref name=cr>Crawford, I.A., [http://www.scientificamerican.com/article.cfm?id=where-are-they "Where are They? Maybe we are alone in the galaxy after all"], '' Scientific American,'' July 2000, 38–43, (2000).</ref> This is relatively brief on a [[geological time|geological scale]], let alone a [[Timeline of the Big Bang|cosmological one]]. Since there are many stars older than the Sun, and since intelligent life might have evolved earlier elsewhere, the question then becomes why the galaxy has not been colonized already. Even if colonization is impractical or undesirable to all alien civilizations, large-scale ''exploration'' of the galaxy could be possible by [[#Alien constructs|probes]]. These might leave detectable artifacts in the Solar System, such as old probes or evidence of mining activity, but none of these have been observed.

The second form of the question is "Why do we see no signs of intelligence elsewhere in the universe?" This version does not assume interstellar travel, but includes other galaxies as well. For distant galaxies, travel times may well explain the lack of alien visits to Earth, but a sufficiently advanced civilization could potentially be observable over a significant fraction of the [[Observable universe#Size|size of the observable universe]].<ref>{{harvnb|Shklovskii|Sagan|1966|p=364}}</ref> Even if such civilizations are rare, the scale argument indicates they should exist somewhere at some point during the history of the universe, and since they could be detected from far away over a considerable period of time, many more potential sites for their origin are within range of our observation. It is unknown whether the paradox is stronger for our galaxy or for the universe as a whole.<ref>{{cite book |title=Extraterrestrials; Where Are They? |editor-first1 = Ben |editor-last1 = Zuckerman |editor-first2=Michael |editor-last2=Hart |author=J. Richard Gott, III |chapter=Chapter 19: Cosmological SETI Frequency Standards}} Page 180.</ref>

===Criticism of logical basis===
The Fermi paradox has been criticized as being based on an inappropriate use of [[propositional logic]]. According to a 1985 paper by [[Robert Freitas]], when recast as a statement in [[modal logic]], the paradox no longer exists, and carries no probative value.<ref name="Freitas1985">{{cite journal|last1=Freitas|first1=Robert A.|title=There is no Fermi Paradox|journal=Icarus|volume=62|issue=3|year=1985|pages=518–520|issn=00191035|doi=10.1016/0019-1035(85)90192-7}}</ref>

== History and name ==
[[File:Los Alamos aerial view.jpeg|thumb|240px|Los Alamos National Laboratory]]
In 1950, while working at [[Los Alamos National Laboratory]], Fermi had a casual conversation while walking to lunch with colleagues [[Emil Konopinski]], [[Edward Teller]] and [[Herbert York]].<ref>{{cite web|last=Shostak|first=Seth|date=October 25, 2001|archiveurl=https://web.archive.org/web/20060415185347/http://space.com/searchforlife/shostak_paradox_011024.html |url=http://www.space.com/searchforlife/shostak_paradox_011024.html|archivedate=April 15, 2006|title=Our Galaxy Should Be Teeming With Civilizations, But Where Are They?|work=Space.com|publisher=Space.com|accessdate=October 14, 2014}}</ref> The men discussed a recent spate of [[Unidentified flying object|UFO]] reports and an [[Alan Dunn (cartoonist)|Alan Dunn]] cartoon<ref>{{cite web |url=http://home.fnal.gov/~carrigan/pillars/New_Yorker_aliens.png |title=Uncaptioned cartoon |author=Alan Dunn |publisher=The New Yorker |date=May 20, 1950 |accessdate = August 19, 2010}}</ref> facetiously blaming the disappearance of municipal trashcans on marauding aliens. The conversation shifted to other subjects, until during lunch Fermi suddenly exclaimed, "Where are they?" (alternatively, "Where is everybody?"). Teller remembers, "The result of his question was general laughter because of the strange fact that in spite of Fermi's question coming from the clear blue, everybody around the table seemed to understand at once that he was talking about extraterrestrial life."<ref name="Eric-Jones">Jones, Eric [http://www.fas.org/sgp/othergov/doe/lanl/la-10311-ms.pdf "Where is everybody?", An account of Fermi's question"], Los Alamos Technical report LA-10311-MS, March 1985.</ref> Herbert York recalls that Fermi followed up on his comment with a series of calculations on the probability of Earth-like planets, the probability of life, the likely rise and duration of high technology, etc., and concluded that we ought to have been visited long ago and many times over.

Although Fermi's name is most commonly associated with the paradox, he was not the first to ask the question. An earlier implicit mention was by [[Konstantin Tsiolkovsky]] in an unpublished manuscript from 1933.<ref>Tsiolkovsky, K, 1933, ''The Planets are Occupied by Living Beings'', Archives of the Tsiolkovsky State Museum of the History of Cosmonautics, Kaluga, Russia. See [[:s:ru:Планеты заселены живыми существами (Циолковский)|original text]] in Russian [[Wikisource]].</ref> He noted "people deny the presence of intelligent beings on the planets of the universe" because "(i) if such beings exist they would have visited Earth, and (ii) if such civilizations existed then they would have given us some sign of their existence." This was not a paradox for others, who took this to imply the absence of ETs, but it was for him, since he himself was a strong believer in extraterrestrial life and the possibility of space travel. Therefore, he proposed what is now known as the [[zoo hypothesis]] and speculated that mankind is not yet ready for higher beings to contact us.<ref>{{cite journal |title=Tsiolkovsky – Russian Cosmism and Extraterrestrial Intelligence |author=Lytkin, V., Finney, B., & Alepko, L.|journal=Quarterly Journal of the Royal Astronomical Society |volume=36 |issue=4 |date=December 1995 |pages=369 |bibcode=1995QJRAS..36..369L |last2=Finney|last3=Alepko}}</ref> That Tsiolkovsky himself may not have been the first to discover the paradox is suggested by his above-mentioned reference to other people's reasons for denying the existence of extraterrestrial civilizations.

[[Michael H. Hart]] published in 1975 a detailed examination of the paradox,<ref name="Hart" /> which has since become a theoretical reference point for much of the research into what is now sometimes known as the '''Fermi–Hart paradox'''.<ref>{{cite journal
| last = Wesson
| first = Paul
| date = 1990
|title = Cosmology, extraterrestrial intelligence, and a resolution of the Fermi-Hart paradox
| journal = [[Quarterly Journal of the Royal Astronomical Society]]
| volume = 31
| pages = 161–170
| bibcode = 1990QJRAS..31..161W
}}</ref> [[Geoffrey A. Landis]] prefers that name on the grounds that "while Fermi is credited with first asking the question, Hart was the first to do a rigorous analysis showing that the problem is not trivial, and also the first to publish his results".<ref>{{cite journal |title=The Fermi Paradox: An Approach Based on Percolation Theory |journal=[[Journal of the British Interplanetary Society]] |year=1998 |last=Landis |first=Geoffrey A. |authorlink=Geoffrey A. Landis |volume=51 |pages=163–166 |url=http://www.geoffreylandis.com/percolation.htp |accessdate=2016-06-12 }}</ref> [[Robert H. Gray]] argues that the term ''Fermi paradox'' is a misnomer, since in his view it is neither a paradox nor due to Fermi; he instead prefers the name '''Hart–Tipler argument''', acknowledging Michael Hart as its originator, but also the substantial contribution of [[Frank J. Tipler]] in extending Hart's arguments.<ref name="Gray2015">{{cite journal|last1=Gray|first1=Robert H.|authorlink=Robert H. Gray|title=The Fermi paradox is neither Fermi's nor a paradox|journal=[[Astrobiology (journal)|Astrobiology]]|volume=15|issue=3|year=2015|pages=195–199|issn=1531-1074|doi=10.1089/ast.2014.1247|bibcode=2015AsBio..15..195G}}</ref>

Other names closely related to '''Fermi's question''' ("Where are they?") include the '''Great Silence''',<ref name="Brin">{{cite journal
| author = Brin, Glen David
| author-link = David Brin
| date = 1983
| title = The 'Great Silence': The Controversy Concerning Extraterrestrial Intelligent Life
| bibcode = 1983QJRAS..24..283B
| journal = [[Quarterly Journal of the Royal Astronomical Society]]
| volume = 24
| pages = 283–309
}}</ref><ref name=Annis>{{cite arXiv
|eprint=astro-ph/9901322
|author=James Annis
|title=An Astrophysical Explanation for the Great Silence
|date=1999
}}</ref><ref name=Hope>{{cite journal
| last = Bostrom
| first = Nick
| author-link = Nick Bostrom
| title = In Great Silence there is Great Hope
| date = 2007
| url = http://www.nickbostrom.com/papers/fermi.pdf
| accessdate = September 6, 2010
}}</ref><ref name="Cirkovic2009" /> and '''''silentium universi'''''<ref name=Cirkovic2009>{{cite journal
|author1=Milan M. Ćirković
|title=Fermi's Paradox – The Last Challenge for Copernicanism?
|date=2009
|doi=10.2298/SAJ0978001C
|journal=Serbian Astronomical Journal
|issue=178
|pages=1–20
|volume=178
|arxiv=0907.3432
|bibcode = 2009SerAJ.178....1C }}</ref> (Latin for "silence of the universe"), though these only refer to one portion of the Fermi Paradox, that we see no evidence of other civilizations.

== Drake equation ==
{{Main article|Drake equation}}

The theories and principles in the [[Drake equation]] are closely related to the Fermi paradox.<ref>Gowdy, Robert H., VCU Department of Physics [http://www.courses.vcu.edu/PHY-rhg/astron/html/mod/019/s5.html SETI: Search for ExtraTerrestrial Intelligence. The Interstellar Distance Problem], 2008</ref> The equation was formulated by [[Frank Drake]] in 1961 in an attempt to find a systematic means to evaluate the numerous probabilities involved in the existence of alien life. The speculative equation considers the rate of [[star formation]] in the galaxy; the fraction of stars with planets and the number per star that are [[Planetary habitability|habitable]]; the fraction of those planets that develop life; the fraction that develop ''intelligent'' life; the fraction that have detectable, technological intelligent life; and finally the length of time such communicable civilizations are detectable. The fundamental problem is that the last four terms are completely unknown, rendering statistical estimates impossible.

The Drake equation has been used by both optimists and pessimists, with wildly differing results. The original meeting, including Frank Drake and [[Carl Sagan]], speculated that the number of civilizations was roughly equal to the lifetime in years, and there were probably between 1000 and 100,000,000 civilizations in the [[Milky Way]] galaxy.<ref>{{cite book
| last1 = Drake | first1 = F.
| last2 = Sobel |first2 = D.
| year = 1992
| title = Is Anyone Out There? The Scientific Search for Extraterrestrial Intelligence
| pages = 55–62
| publisher = Delta
| isbn = 0-385-31122-2
}}</ref> Conversely, [[Frank J. Tipler|Frank Tipler]] and [[John D. Barrow]] used pessimistic numbers and speculated that the average number of civilizations in a galaxy is much less than one.<ref>{{BarrowTipler1986|page=588}}</ref>

== Empirical projects ==
There are two parts of the Fermi paradox that rely on empirical evidence—that there are many potential [[Planetary habitability|habitable planets]], and that we see no evidence of life. The first point, that many suitable planets exist, was an assumption in Fermi's time that is gaining ground with the discovery of many [[exoplanet]]s, and models predicting billions of habitable worlds in our galaxy.<ref>{{cite journal |title=On The History and Future of Cosmic Planet Formation |journal=MNRAS |date=December 1, 2015 |volume=454 |issue=2 |pages=1811–1817 |doi=10.1093/mnras/stv1817|arxiv = 1508.01202 |bibcode = 2015MNRAS.454.1811B |last1=Behroozi |first1=Peter |last2=Peeples |first2=Molly S. }}</ref>

The second part of the paradox, that we see no evidence of extraterrestrial life, is also an active field of scientific research. This includes both efforts to find any indication of life,<ref>{{cite journal |journal=Astrophys Space Sci |date=2013 |volume=348 |pages=1–10 |doi=10.1007/s10509-013-1536-9 |title=Final frontiers: the hunt for life elsewhere in the Universe |author=Sohan Jheeta|bibcode = 2013Ap&SS.348....1J }}</ref> and efforts specifically directed to finding intelligent life. These searches have been made since 1960, and several are ongoing.<ref>See, for example, the [[SETI Institute]], [http://seti.harvard.edu/seti/ The Harvard SETI Home Page], or [http://seti.berkeley.edu/ The Search for Extra Terrestrial Intelligence at Berkeley]</ref>

=== Mainstream astronomy and SETI ===
[[File:Marciano Genérico.JPG|thumb|An artist's depiction of the "little green man" described in the novel ''[[Martians, Go Home]]'']]
Although astronomers do not usually search for extraterrestrials, they have observed phenomena that they could not immediately explain without positing an intelligent civilization as the source. For example, [[pulsar]]s, when [[PSR B1919+21|first discovered]] in 1967, were called [[little green men]] (LGM) because of the precise repetition of their pulses.<ref>{{cite news |title=Discovery of pulsars: a graduate student's story
|author=Wade, Nicholas
|journal=Science
|volume=189
|issue=4200
|pages=358–364
|year=1975
|url=http://www.sciencemag.org/content/189/4200/358.short}}</ref> In all cases, explanations with no need for intelligent life have been found for such observations,<ref>Pulsars are now attributed to neutron stars, and Seyfert galaxies to an end-on view of the accretion onto the black holes.</ref> but the possibility of discovery remains.<ref>{{cite web|title=NASA/CP2007-214567: Workshop Report on the Future of Intelligence in the Cosmos |url=http://event.arc.nasa.gov/main/home/reports/CP2007-214567_Langhoff.pdf |publisher=NASA |deadurl=yes |archiveurl=https://web.archive.org/web/20140811194232/http://event.arc.nasa.gov/main/home/reports/CP2007-214567_Langhoff.pdf |archivedate=August 11, 2014 |df= }}</ref> Proposed examples include [[asteroid mining]] that would change the appearance of debris disks around stars,<ref>{{cite journal |title=Extrasolar Asteroid Mining as Forensic Evidence for Extraterrestrial Intelligence |author= Duncan Forgan, Martin Elvis |journal=International Journal of Astrobiology |date=March 28, 2011 |arxiv=1103.5369 |bibcode = 2011IJAsB..10..307F |doi = 10.1017/S1473550411000127 |volume=10 |issue=4 |pages=307–313 |last2= Elvis }}</ref> or spectral lines from nuclear waste disposal in stars.<ref>{{cite journal |author1=Whitmire, Daniel P. |author2=David P. Wright. |title=Nuclear waste spectrum as evidence of technological extraterrestrial civilizations |journal=Icarus |volume=42.1 |date=1980 |pages=149–156 |url=http://www.sciencedirect.com/science/article/pii/0019103580902535 |doi=10.1016/0019-1035(80)90253-5 |bibcode=1980Icar...42..149W}}</ref> An ongoing example is the unusual transit light curves of star [[KIC 8462852]], where natural interpretations are not fully convincing.<ref>{{cite journal |title=Planet Hunters IX. KIC 8462852 – where's the flux? |journal=MNRAS |last1= Boyajian |first1=T. S. |last2= LaCourse |first2=D. M. |last3= Rappaport |first3=S. A. |last4= Fabrycky |first4=D. |last5= Fischer |first5=D. A. |last6= Gandolfi |first6=D. |last7= Kennedy |first7=G. M. |last8= Liu |first8=M. C. |last9= Moor |first9=A. |last10= Olah |first10=K. |last11= Vida |first11=K. |last12= Wyatt |first12=M. C. |last13= Best |first13=W. M. J. |last14= Ciesla |first14=F. |last15= Csak |first15=B. |last16= Dupuy |first16=T. J. |last17= Handler |first17=G. |last18= Heng |first18=K. |last19= Korhonen |first19=H. |last20= Kovacs |first20=J. |last21= Kozakis |first21=T. |last22= Kriskovics |first22=L. |last23= Schmitt |first23=J. R. |last24= Szabo |first24=Gy. |last25= Szabo |first25=R. |last26= Wang |first26=J. |last27= Goodman |first27=S. |last28= Hoekstra |first28=A. |last29= Jek |first29=K. J. |date=April 21, 2016 |volume=457 |issue=4 |pages=3988–4004 |doi=10.1093/mnras/stw218|arxiv = 1509.03622 |bibcode = 2016MNRAS.457.3988B }}</ref> Although most likely a natural explanation will emerge, some scientists are investigating the remote possibility that it could be a sign of alien technology, such as a [[Dyson sphere#Dyson swarm|Dyson swarm]].<ref>{{cite web |title=The Most Mysterious Star in our Galaxy |url=https://www.theatlantic.com/science/archive/2015/10/the-most-interesting-star-in-our-galaxy/410023/ |work=The Atlantic |date=October 13, 2015 |author=Ross Anderson}}</ref><ref>{{cite web |title=Has Kepler Discovered an Alien Megastructure? |url=http://news.discovery.com/space/alien-life-exoplanets/has-kepler-discovered-an-alien-megastructure-151014.htm |publisher=Discovery News |date=October 14, 2015 |author= Ian O'Neill}}</ref><ref>{{Cite journal|arxiv=1510.04606| last1= Wright| first1= Jason T.|title= The Ĝ Search for Extraterrestrial Civilizations with Large Energy Supplies. IV. The Signatures and Information Content of Transiting Megastructures| journal= The Astrophysical Journal| volume= 816| pages= 17| last2=Cartier| first2= Kimberly M. S.| last3= Zhao| first3= Ming| last4= Jontof-Hutter| first4= Daniel| last5= Ford| first5= Eric B.| year= 2015| doi= 10.3847/0004-637X/816/1/17}}</ref>

=== Electromagnetic emissions ===
{{Further information|SETI|Project Ozma|Project Cyclops|Project Phoenix (SETI)|SERENDIP|Allen Telescope Array}}
[[File:parkes.arp.750pix.jpg|thumb|left|[[Radio telescope]]s are often used by SETI projects]]
Radio technology and the ability to construct a [[radio telescope]] are presumed to be a natural advance for technological species,<ref>{{cite web
|last=Mullen
|first=Leslie
|date=2002
|url=http://www.space.com/scienceastronomy/alien_intelligence_021202.html
|archive-url=https://web.archive.org/web/20030212141854/http://www.space.com/scienceastronomy/alien_intelligence_021202.html
|dead-url=yes
|archive-date=February 12, 2003
|title=Alien Intelligence Depends on Time Needed to Grow Brains
|work=Astrobiology Magazine
|publisher=Space.com
|accessdate=April 21, 2006
|df=
}}</ref> theoretically creating effects that might be detected over interstellar distances. The careful searching for non-natural radio emissions from space may lead to the detection of alien civilizations. Sensitive alien observers of the [[Solar System]], for example, would note unusually intense [[radio wave]]s for a [[Star#Classification|G2 star]] due to Earth's television and telecommunication broadcasts. In the absence of an apparent natural cause, alien observers might infer the existence of a terrestrial civilization. It should be noted however that the most sensitive radio telescopes currently available on Earth would not be able to detect non-directional radio signals even at a fraction of a [[light-year]], so it is questionable whether any such signals could be detected by an extraterrestrial civilization. Such signals could be either "accidental" by-products of a civilization, or deliberate attempts to communicate, such as the [[Arecibo message]]. A number of astronomers and observatories have attempted and are attempting to detect such evidence, mostly through the [[SETI]] organization. Several decades of SETI analysis have not revealed any unusually bright or meaningfully repetitive radio emissions.

=== Direct planetary observation ===
[[File:Earthlights dmsp 1994–1995.jpg|350px|thumb|A composite picture of Earth at night, created with data from the [[Defense Meteorological Satellite Program]] (DMSP) Operational Linescan System (OLS). Large-scale artificial lighting produced by the human [[civilization]] is detectable from space.]]

[[Exoplanet]] detection and classification is a very active sub-discipline in astronomy, and the first possibly [[terrestrial planet]] discovered within a star's [[Circumstellar habitable zone|habitable zone]] was found in 2007.<ref>{{cite journal|last1=Udry |first1=S. |last2=Bonfils |first2=X. |last3=Delfosse |first3=X. |last4=Forveille |first4=T. |last5=Mayor |first5=M. |last6=Perrier |first6=C. |last7=Bouchy |first7=F. |last8=Lovis |first8=C. |last9=Pepe |first9=F. |title=The HARPS search for southern extra-solar planets |doi=10.1051/0004-6361:20077612 |date=2007 |pages=L43 |issue=3 |volume=469 |journal=Astronomy and Astrophysics |url=http://exoplanet.eu/papers/udry_terre_HARPS-1.pdf |bibcode=2007A&A...469L..43U |arxiv=0704.3841 |last10=Queloz |first10=D. |last11=Bertaux |first11=J.-L. |deadurl=yes |archiveurl=https://web.archive.org/web/20101008120426/http://exoplanet.eu/papers/udry_terre_HARPS-1.pdf |archivedate=October 8, 2010 |df= }}</ref> New [[Methods of detecting extrasolar planets#Other possible methods|refinements in exoplanet detection methods]], and use of existing methods from space (such as the [[Kepler Mission]], launched in 2009) are starting to detect and characterize Earth-size planets, and determine if they are within the habitable zones of their stars. Such observational refinements may allow us to better gauge how common potentially habitable worlds are.<ref>From {{cite web |url=http://kepler.nasa.gov/Mission/QuickGuide/ |title=Kepler: About the Mission |publisher=NASA}} "The Kepler Mission, NASA Discovery mission #10, is specifically designed to survey a portion of our region of the Milky Way galaxy to discover dozens of Earth-size planets in or near the habitable zone and determine how many of the billions of stars in our galaxy have such planets."</ref>

==== Conjectures about interstellar probes ====
{{Further information|Von Neumann probe|Bracewell probe}}

Self-replicating probes could exhaustively explore a galaxy the size of the [[Milky Way]] in as little as a million years.<ref name="Hart"/> If even a single civilization in the Milky Way attempted this, such probes could spread throughout the entire galaxy. Another speculation for contact with an alien probe—one that would be trying to find human beings—is an alien [[Bracewell probe]]. Such a hypothetical device would be an autonomous space probe whose purpose is to seek out and communicate with alien civilizations (as opposed to Von Neumann probes, which are usually described as purely exploratory). These were proposed as an alternative to carrying a slow [[speed-of-light]] dialogue between vastly distant neighbors. Rather than contending with the long delays a radio dialogue would suffer, a probe housing an [[artificial intelligence]] would seek out an alien civilization to carry on a close-range communication with the discovered civilization. The findings of such a probe would still have to be transmitted to the home civilization at light speed, but an information-gathering dialogue could be conducted in real time.<ref>{{cite journal| last1=Bracewell| first1=R. N.| title=Communications from Superior Galactic Communities| journal=Nature| volume=186| issue=4726| pages=670–671| date=1960| doi=10.1038/186670a0| bibcode = 1960Natur.186..670B }}</ref>

==== Attempts to find alien probes ====
Direct exploration of the Solar System has yielded no evidence indicating a visit by aliens or their probes. Detailed exploration of areas of the Solar System where resources would be plentiful may yet produce evidence of alien exploration,<ref name="AsteroidBelt">{{cite journal |author=Papagiannis, M. D. |title=Are We all Alone, or could They be in the Asteroid Belt? |journal=[[Quarterly Journal of the Royal Astronomical Society]] |volume=19 |pages=277–281 |date=1978 |bibcode = 1978QJRAS..19..277P |url=http://adsabs.harvard.edu/full/1978QJRAS..19..277P}}</ref><ref>{{cite news |title=Extraterrestrial Intelligence in the Solar System: Resolving the Fermi Paradox |author=Robert A. Freitas Jr. |journal=Journal of the [[British Interplanetary Society]] |volume=36 |date=November 1983 |pages=496–500 |url=http://www.rfreitas.com/Astro/ResolvingFermi1983.htm}}</ref> though the entirety of the Solar System is vast and difficult to investigate. Attempts to signal, attract, or activate hypothetical Bracewell probes in Earth's vicinity have not succeeded.<ref>{{cite journal| last1=Freitas| first1=Robert A Jr|last2=Valdes|first2=F|doi=10.1016/0094-5765(85)90031-1|title=The search for extraterrestrial artifacts (SETA)|url=http://www.sciencedirect.com/science/article/pii/0094576585900311| date=1985 |pages=1027–1034| issue=12| volume=12| journal=Acta Astronautica| accessdate = August 19, 2010| bibcode = 1985AcAau..12.1027F }}</ref>

==== Conjectures about stellar-scale artifacts ====
{{further information|Dyson sphere|Kardashev scale|Alderson disk|Matrioshka brain|Stellar engine}}

[[File:Dyson Sphere Diagram-en.svg|thumb|300px|A variant of the speculative [[Dyson sphere]]. Such large scale artifacts would drastically alter the spectrum of a star.]]

In 1959, [[Freeman Dyson]] observed that every developing human civilization constantly increases its energy consumption, and, he conjectured, a civilization might try to harness a large part of the energy produced by a star. He proposed that a Dyson sphere could be a possible means: a shell or cloud of objects enclosing a star to absorb and utilize as much radiant energy as possible. Such a feat of [[astroengineering]] would drastically alter the observed [[spectroscopy|spectrum]] of the star involved, changing it at least partly from the normal [[emission line]]s of a natural [[stellar atmosphere]] to those of [[black body radiation]], probably with a peak in the [[infrared]]. Dyson speculated that advanced alien civilizations might be detected by examining the spectra of stars and searching for such an altered spectrum.<ref>{{cite journal| journal=[[Science (journal)|Science]]| date= 1960| url=http://www.islandone.org/LEOBiblio/SETI1.HTM| title=Search for Artificial Stellar Sources of Infra-Red Radiation| author= [[Freeman Dyson|Dyson, Freeman J.]]| pages= 1667–1668| volume =131| doi= 10.1126/science.131.3414.1667| pmid=17780673| issue=3414| bibcode = 1960Sci...131.1667D }}</ref><ref name="G^I">{{Cite journal| arxiv=1408.1133| last1= Wright| first1= J. T.| title= The Ĝ Infrared Search for Extraterrestrial Civilizations with Large Energy Supplies. I. Background and Justification| journal= The Astrophysical Journal| volume= 792| pages= 26| last2= Mullan| first2= B.| last3= Sigurðsson| first3= S.|last4= Povich| first4= M. S.| date= 2014| doi= 10.1088/0004-637X/792/1/26| bibcode= 2014ApJ...792...26W}}</ref><ref name="G^II">{{Cite journal| arxiv=1408.1134| last1= Wright| first1= J. T.| title= The Ĝ Infrared Search for Extraterrestrial Civilizations with Large Energy Supplies. II. Framework, Strategy, and First Result| journal= The Astrophysical Journal| volume= 792| pages= 27| last2= Griffith| first2= R.| last3= Sigurðsson| first3= S.| last4= Povich| first4= M. S.| last5= Mullan| first5= B.| date= 2014| doi= 10.1088/0004-637X/792/1/27| bibcode= 2014ApJ...792...27W}}</ref>

There have been some attempts to find evidence of the existence of Dyson spheres that would alter the spectra of their core stars.<ref>{{cite web|url = http://home.fnal.gov/~carrigan/infrared_astronomy/Fermilab_search.htm|title = Fermilab Dyson Sphere search program| publisher =Fermi National Accelerator Laboratory| accessdate = February 10, 2008 }}</ref> Direct observation of thousands of galaxies has shown no explicit evidence of artificial construction or modifications.<ref name="G^I" /><ref name="G^II" /><ref name="G^III">{{Cite journal|first1=J. T. |last1=Wright |first2=B |last2=Mullan |first3=S |last3=Sigurdsson |first4=M. S |last4=Povich |arxiv=1504.03418 |title=The Ĝ Infrared Search for Extraterrestrial Civilizations with Large Energy Supplies. III. The Reddest Extended Sources in WISE |journal=The Astrophysical Journal Supplement Series |volume=217 |issue=2 |pages=25 |date=2014|doi=10.1088/0067-0049/217/2/25 |bibcode=2015ApJS..217...25G }}</ref><ref>{{cite news |title=Alien Supercivilizations Absent from 100,000 Nearby Galaxies |url=http://www.scientificamerican.com/article/alien-supercivilizations-absent-from-100-000-nearby-galaxies/ |work=Scientific American |date=April 17, 2015}}</ref> In October 2015, there was some speculation that a pattern of light from star [[KIC 8462852]], observed by the [[Kepler Space Telescope]], could have been a result of Dyson sphere construction.<ref name="ATL-20151013">{{cite web| last1=Andersen| first1=Ross| title=The Most Mysterious Star in Our Galaxy| url=https://www.theatlantic.com/science/archive/2015/10/the-most-interesting-star-in-our-galaxy/410023/ |date=October 13, 2015 |work=[[The Atlantic]]| accessdate=October 13, 2015}}</ref><ref name="IND-20151015">{{cite web| last1=Williams| first1=Lee| title=Astronomers may have found giant alien 'megastructures' orbiting star near the Milky Way| url=http://www.independent.co.uk/news/world/forget-water-on-mars-astronomers-may-have-just-found-giant-alien-megastructures-orbiting-a-star-near-a6693886.html |date=October 15, 2015 |work=[[The Independent]]| accessdate=October 15, 2015}}</ref>

== Hypothetical explanations for the paradox ==
=== Extraterrestrial life is rare or non-existent ===
{{main article|Rare Earth hypothesis}}
Those who think that intelligent [[extraterrestrial life]] is (nearly) impossible argue that the conditions needed for the evolution of life—or at least the [[evolution of biological complexity]]—are rare or even unique to Earth. Under this assumption, called the [[rare Earth hypothesis]], a rejection of the [[mediocrity principle]], complex multicellular life is regarded as exceedingly unusual.<ref name="rare-earth">{{cite book |title=Rare Earth: Why Complex Life is Uncommon in the Universe |first1=Peter D. |last1=Ward |authorlink1=Peter Ward (paleontologist) |first2=Donald |last2=Brownlee |authorlink2=Donald Brownlee |date=January 14, 2000 |page=368 |publisher=Springer |edition=1st |isbn=978-0-387-98701-9}}</ref>

The Rare Earth hypothesis argues that the [[evolution of biological complexity]] requires a host of fortuitous circumstances, such as a [[galactic habitable zone]], a central star and planetary system having the requisite character, the [[circumstellar habitable zone]], a right sized terrestrial planet, the advantage of a giant guardian like Jupiter and a large [[natural satellite]], conditions needed to ensure the planet has a [[magnetosphere]] and [[plate tectonics]], the chemistry of the [[lithosphere]], [[atmosphere]], and oceans, the role of "evolutionary pumps" such as massive [[glaciation]] and rare [[Meteoroid#Bolide|bolide]] impacts, and whatever led to the appearance of the [[eukaryote]] [[cell (biology)|cell]], [[sexual reproduction]] and the [[Cambrian explosion]].

=== No other intelligent species have arisen ===
It is possible that even if complex life is common, intelligence (and consequently civilizations) is not.<ref>{{cite conference
|title=Paleontological tests: human-like intelligence is not a convergent feature of evolution
|author=Lineweaver, Charles H
|conference=From fossils to astrobiology
|pages=353–368
|year=2008
|publisher=Springer
|arxiv=0711.1751 }}</ref>
While there are remote sensing techniques that could perhaps detect life-bearing planets without relying on the signs of technology,<ref>{{cite journal
|title=Detecting Life-bearing Extrasolar Planets with Space Telescopes
|bibcode=2008ApJ...684.1404B
|author1=Steven V. W. Beckwith
|doi=10.1086/590466
|issue=2,
|journal=The Astrophysical Journal
|volume=684
|pages=1404–1415
|date=2008
|publisher=IOP Publishing|arxiv = 0710.1444}}</ref><ref>{{cite journal
|title=Detection of circular polarization in light scattered from photosynthetic microbes
|author=Sparks, W.B. and Hough, J. and Germer, T.A. and Chen, F. and DasSarma, S. and DasSarma, P. and Robb, F.T. and Manset, N. and Kolokolova, L. and Reid, N.|display-authors=etal
|journal=Proceedings of the National Academy of Sciences
|volume=106
|issue=14–16
|pages=7816
|date=2009
|publisher=National Acad Sciences
|url=http://www.pnas.org/content/early/2009/04/28/0810215106.full.pdf
|doi=10.1016/j.jqsrt.2009.02.028}}</ref> none of them has any ability to tell if any detected life is intelligent. This is sometimes referred to as the "algae vs. alumnae" problem.<ref name="Tarter-NYAS" />

=== Intelligent alien species lack advanced technology ===
It may be that while alien species with intelligence exist, they are primitive or have not reached the level of technological advancement necessary to communicate. Along with non-intelligent life, such civilizations would be also very difficult for us to detect.<ref name="Tarter-NYAS">{{cite journal| last1=Tarter| first1=Jill| title=What is SETI?| journal=Annals of the New York Academy of Sciences| volume=950|issue=1|pages=269–75|date=2006| pmid=11797755|doi=10.1111/j.1749-6632.2001.tb02144.x|bibcode = 2001NYASA.950..269T }}</ref>
To skeptics, the fact that in the history of life on the Earth only one species has developed a civilization to the point of being capable of [[spaceflight]] and radio technology, lends more credence to the idea that technologically advanced civilizations are rare in the universe.<ref>{{cite news |title=The Intelligent-Life Lottery |url=https://www.nytimes.com/2014/08/19/science/in-search-for-intelligent-life-consider-the-lottery.html |newspaper=The New York Times |date= August 18, 2014}}</ref>

=== It is the nature of intelligent life to destroy itself ===
[[File:Operation Upshot-Knothole - Badger 001.jpg|right|250px|thumb|A 23-kiloton tower shot called [[BADGER]], fired as part of the [[Operation Upshot–Knothole]] [[nuclear testing|nuclear test series]].]]
This is the argument that technological civilizations may usually or invariably destroy themselves before or shortly after developing radio or spaceflight technology. Possible means of annihilation are many,<ref>Webb, 2nd edition, 2015, Chapters 36–39.</ref> including war, accidental environmental contamination or damage, resource depletion, [[global warming|climate change]],<ref>{{cite news |url=https://www.nytimes.com/2015/01/18/opinion/sunday/is-a-climate-disaster-inevitable.html |title=Is a Climate Disaster Inevitable? |work=The New York Times |date=January 17, 2015 }}</ref> or [[Existential risk from advanced artificial intelligence|poorly designed artificial intelligence]]. This general theme is explored both in fiction and in scientific hypothesizing.<ref>{{cite web |title=Existential Risks Analyzing Human Extinction Scenarios and Related Hazards |author=Bostrom, Nick|url=http://www.nickbostrom.com/existential/risks.html |accessdate=October 4, 2009}}</ref> In 1966, Sagan and [[Iosif Shklovsky|Shklovskii]] speculated that technological civilizations will either tend to destroy themselves within a century of developing interstellar communicative capability or master their self-destructive tendencies and survive for billion-year timescales.<ref>{{cite web |url=http://www.bigear.org/vol1no2/sagan.htm |title=Cosmic Search Vol. 1 No. 2 |last=Sagan |first=Carl |work=Cosmic Search Magazine |accessdate=2015-07-21 }}</ref> Self-annihilation may also be viewed in terms of thermodynamics: insofar as life is an ordered system that can sustain itself against the tendency to disorder, the "external transmission" or interstellar communicative phase may be the point at which the system becomes unstable and self-destructs.<ref>{{cite web| last = Hawking| first = Stephen| url = http://www.hawking.org.uk/lectures/life.html| archiveurl = https://web.archive.org/web/20060421051343/http://www.hawking.org.uk/lectures/life.html|archivedate = April 21, 2006| title = Life in the Universe| work = Public Lectures| publisher = University of Cambridge| accessdate = May 11, 2006}}</ref>

=== It is the nature of intelligent life to destroy others ===
{{See also|Technological singularity|Von Neumann probe}}
Another hypothesis is that an intelligent species beyond a certain point of technological capability will destroy other intelligent species as they appear. The idea that [[Self-replicating spacecraft#Berserkers|something]], or someone, might be destroying intelligent life in the universe has been explored in the scientific literature.<ref name="Brin" /> A species might undertake such extermination out of expansionist motives, paranoia, or aggression. In 1981, cosmologist [[Edward Robert Harrison|Edward Harrison]] argued that such behavior would be an act of prudence: an intelligent species that has overcome its own self-destructive tendencies might view any other species bent on galactic expansion as a threat.<ref>{{cite web| last = Soter| first = Steven
| date = 2005| url = http://www.astrobio.net/news/modules.php?op=modload&name=News&file=article&sid=1745 |title = SETI and the Cosmic Quarantine Hypothesis| work = Astrobiology Magazine| publisher =Space.com| accessdate = May 3, 2006 }}</ref> It has also been suggested that a successful alien species would be a [[Apex predator|superpredator]], as are humans.<ref>{{cite journal| author=Archer, Michael| title=Slime Monsters Will Be Human Too| journal=Aust. Nat. Hist| volume=22| pages=546–547| date=1989}}</ref><ref>{{harvnb|Webb|2002|p=112}}</ref>

=== Periodic extinction by natural events ===
New life might commonly die out due to runaway heating or cooling on their fledgling planets.<ref>{{cite news |url=http://astrobiology.com/2016/01/the-aliens-are-silent-because-they-are-extinct.html |title=The Aliens Are Silent Because They Are Extinct |work=Australian National University |date=January 21, 2016 |accessdate=2016-01-22 }}</ref> On Earth, there have been numerous major [[extinction event]]s that destroyed the majority of complex species alive at the time; the [[K-T extinction|extinction of the dinosaurs]] is the best known example. These are thought to have been caused by events such as impact from a large meteorite, massive volcanic eruptions, or astronomical events such as [[gamma-ray burst]]s.<ref>{{cite journal |doi=10.1017/S1473550404001910 |title=Did a gamma-ray burst initiate the late Ordovician mass extinction? |authors=Melott, A.L. and Lieberman, BS and Laird, CM and Martin, LD and Medvedev, MV and Thomas, BC and Cannizzo, JK and Gehrels, N. and Jackman, CH |journal=International Journal of Astrobiology |volume=3 |issue=1 |pages=55–61 |date=2004 |publisher=Cambridge University Press |url = http://acdb-ext.gsfc.nasa.gov/People/Jackman/Melott_2004.pdf|arxiv = astro-ph/0309415 |bibcode = 2004IJAsB...3...55M }}</ref> It may be the case that such extinction events are common throughout the universe and periodically destroy intelligent life, or at least its civilizations, before the species is able to develop the technology to communicate with other species.<ref>{{cite book |title=Global catastrophic risks |author1=Nick Bostrom |author2=Milan M. Ćirković |chapter=12.5: The Fermi Paradox and Mass Extinctions}}</ref>

=== Inflation hypothesis and the youngness argument ===
Cosmologist [[Alan Guth]] proposed a multi-verse solution to the Fermi paradox. This hypothesis uses the [[synchronous gauge]] probability distribution, with the result that young universes exceedingly outnumber older ones (by a factor of e<sup>10<sup>37</sup></sup> for every second of age). Therefore, averaged over all universes, universes with civilizations will almost always have just one, the first to develop. However, Guth notes "Perhaps this argument explains why SETI has not found any signals from alien civilizations, but I find it more plausible that it is merely a symptom that the synchronous gauge probability distribution is not the right one."<ref>{{cite journal|url = http://arxiv.org/PS_cache/hep-th/pdf/0702/0702178v1.pdf|journal = Journal of Physics A: Mathematical and Theoretical|title = Eternal Inflation and its Implications|volume = 40|issue = 25|pages = 6811–6826 | first = Alan|date = 2007 | last = Guth|doi=10.1088/1751-8113/40/25/S25|arxiv = hep-th/0702178 |bibcode = 2007JPhA...40.6811G }}</ref>

=== Intelligent civilizations are too far apart in space or time ===
[[File:Terrestrial Planet Finder PIA04499.jpg|thumb|[[NASA]]'s conception of the [[Terrestrial Planet Finder]]]]

It may be that non-colonizing technologically capable alien civilizations exist, but that they are simply too far apart for meaningful two-way communication.<ref>{{harvnb|Webb|2002|pp=62–71}}</ref> If two civilizations are separated by several thousand light-years, it is possible that one or both cultures may become extinct before meaningful dialogue can be established. Human searches may be able to detect their existence, but communication will remain impossible because of distance. It has been suggested that this problem might be ameliorated somewhat if contact/communication is made through a [[Bracewell probe]]. In this case at least one partner in the exchange may obtain meaningful information. Alternatively, a civilization may simply broadcast its knowledge, and leave it to the receiver to make what they may of it. This is similar to the transmission of information from ancient civilizations to the present,<ref>{{cite web|author=Vakoch, Douglas |title=Decoding E.T.: Ancient Tongues Point Way To Learning Alien Languages |publisher=SETI Institute |date=November 15, 2001 |accessdate=August 19, 2010 |url=http://www.space.com/searchforlife/seti_decode_011115.html |deadurl=yes |archiveurl=https://web.archive.org/web/20090523030456/https://www.space.com/searchforlife/seti_decode_011115.html |archivedate=May 23, 2009 |df= }}</ref> and humanity has undertaken similar activities like the [[Arecibo message]], which could transfer information about Earth's intelligent species, even if it never yields a response or does not yield a response in time for humanity to receive it. It is also possible that [[archaeology|archaeological]] evidence of past civilizations may be detected through deep space observations.<ref>{{cite arXiv |author1=Adam Stevens |author2=Duncan Forgan |author3=Jack O'Malley James |date=2015 |title=Observational Signatures of Self–Destructive Civilisations |eprint=1507.08530 |class=astro-ph.EP }}</ref>

A related speculation by Sagan and Newman suggests that if other civilizations exist, and are transmitting and exploring, their signals and probes simply have not arrived yet.<ref>{{cite journal |author1=Newman, W.T. |author2=Sagan, C. |date=1981 |title=Galactic civilizations: Population. dynamics and interstellar diffusion |journal=Icarus |volume=46 |issue=3 |pages=293–327 |doi=10.1016/0019-1035(81)90135-4 |bibcode=1981Icar...46..293N}}</ref> However, critics have noted that this is unlikely, since it requires that humanity's advancement has occurred at a very special point in time, while the Milky Way is in transition from empty to full. This is a tiny fraction of the lifespan of a galaxy under ordinary assumptions and calculations resulting from them, so the likelihood that we are in the midst of this transition is considered low in the paradox.<ref>{{cite journal |author= Brin, Glen David |date=1983 |title= The 'Great Silence': The Controversy Concerning Extraterrestrial Intelligent Life |bibcode= 1983QJRAS..24..283B| journal=[[Quarterly Journal of the Royal Astronomical Society]]| volume=24 |pages=287, 298}}</ref>

=== It is too expensive to spread physically throughout the galaxy ===
{{See also|Project Daedalus|Project Orion (nuclear propulsion)|Project Longshot}}

Many speculations about the ability of an alien culture to colonize other star systems are based on the idea that interstellar travel is technologically feasible. While the current understanding of physics rules out the possibility of [[faster-than-light]] travel, it appears that there are no major theoretical barriers to the construction of "slow" interstellar ships, even though the engineering required is considerably beyond our present capabilities. This idea underlies the concept of the Von Neumann probe and the Bracewell probe as a potential evidence of extraterrestrial intelligence.

It is possible, however, that present scientific knowledge cannot properly gauge the feasibility and costs of such interstellar colonization. Theoretical barriers may not yet be understood, and the cost of materials and energy for such ventures may be so high as to make it unlikely that any civilization could afford to attempt it. Even if interstellar travel and colonization are possible, they may be difficult, leading to a colonization model based on [[percolation theory]].<ref name=landis>{{cite journal|authorlink=Geoffrey A. Landis|author=Landis, Geoffrey|url=http://www.sff.net/people/Geoffrey.Landis/percolation.htp |title=The Fermi Paradox: An Approach Based on Percolation Theory|journal=Journal of the British Interplanetary Society|volume= 51|pages= 163–166|date= 1998|bibcode = 1998JBIS...51..163L }}</ref> Colonization efforts may not occur as an unstoppable rush, but rather as an uneven tendency to "percolate" outwards, within an eventual slowing and termination of the effort given the enormous costs involved and the expectation that colonies will inevitably develop a culture and civilization of their own. Colonization may thus occur in "clusters," with large areas remaining uncolonized at any one time.<ref name=landis />

If exploration, or backup from a home system disaster, is the primary motive for expansion, then it is possible that [[mind uploading]] and similar technologies may reduce the desire to colonize by replacing physical travel with much less-expensive communication.<ref>{{cite journal |author=Scheffer, L.K. |date= 1994 |title=Machine Intelligence, the Cost of Interstellar Travel and Fermi's Paradox |bibcode=1994QJRAS..35..157S|journal=[[Quarterly Journal of the Royal Astronomical Society]] |volume=35 |page=157}}</ref> Therefore the first civilization may have physically explored or colonized the galaxy, but subsequent civilizations find it cheaper, faster, and easier to travel by contacting existing civilizations rather than physically exploring or traveling themselves. This leads to little or no physical travel at the current epoch, and only directed communications, which are hard to see except to the intended receiver.

=== Human beings have not existed long enough ===
Humanity's ability to detect intelligent extraterrestrial life has existed for only a very brief period—from 1937 onwards, if the invention of the [[radio telescope]] is taken as the dividing line—and ''[[Homo sapiens]]'' is a geologically recent species. The whole period of modern human existence to date is a very brief period on a cosmological scale, and radio transmissions have only been propagated since 1895. Thus, it remains possible that human beings have neither existed long enough nor made themselves sufficiently detectable to be found by extraterrestrial intelligence.<ref>{{cite journal |authors=Baum, Seth D., Jacob D. Haqq-Misra, and Shawn D. Domagal-Goldman |title=Would contact with extraterrestrials benefit or harm humanity? A scenario analysis |journal=Acta Astronautica |volume=68 |issue=11 |date=2011 |pages=2114–2129 |arxiv = 1104.4462 |bibcode = 2011AcAau..68.2114B |doi = 10.1016/j.actaastro.2010.10.012 }} "If ETI search for us just as we search for them, i.e. by scanning the sky at radio and optical wavelengths [...] the radiation that has been unintentionally leaking and intentionally transmitted from Earth may have already alerted any nearby ETI to our presence and may eventually alert more distant ETI. Once ETI become alerted to our presence, it will take at least as many years for us to realize that they know."</ref>

=== We are not listening properly ===
There are some assumptions that underlie the [[SETI]] programs that may cause searchers to miss signals that are present. Extraterrestrials might, for example, transmit signals that have a very high or low data rate, or employ unconventional (in our terms) [[Frequency|frequencies]], which would make them hard to distinguish from background noise. Signals might be sent from non-[[main sequence]] star systems that we search with lower priority; current programs assume that most alien life will be orbiting [[Solar twins|Sun-like stars]].<ref>{{cite journal|last1=Turnbull|first1=Margaret C.|last2=Tarter|first2=Jill C.|doi=10.1086/345779|title=Target Selection for SETI. I. A Catalog of Nearby Habitable Stellar Systems| url=http://www.projectrho.com/HabCat.pdf| date=2003| pages=181–198| issue=1| volume=145| journal=The Astrophysical Journal Supplement Series| accessdate=August 19, 2010| bibcode=2003ApJS..145..181T|arxiv = astro-ph/0210675 }}</ref>

The greatest challenge is the sheer size of the radio search needed to look for signals (effectively spanning the entire visible universe), the limited amount of resources committed to SETI, and the sensitivity of modern instruments. SETI estimates, for instance, that with a radio telescope as sensitive as the [[Arecibo Observatory]], Earth's television and radio broadcasts would only be detectable at distances up to 0.3 light-years, less than 1/10 the distance to the nearest star. A signal is much easier to detect if the signal energy is limited to either a [[narrowband|narrow]] range of frequencies, or directed at a specific part of the sky. Such signals could be detected at ranges of hundreds to tens of thousands of light-years distance.<ref>{{cite journal |journal=Icarus |volume=26 |issue=4 |date=December 1975 |pages=462–466 |title=The Arecibo message of November, 1974 |author=The Staff at the National Astronomy and Ionosphere Center |url=http://www.sciencedirect.com/science/article/pii/0019103575901165 |bibcode = 1975Icar...26..462. |doi = 10.1016/0019-1035(75)90116-5 }} "A radio telescope in M13 operating at the transmission frequency, and pointed toward the Sun at the time the message arrives at the receiving site will observe a flux density from the message which will exceed the flux density of the Sun itself by a factor of roughly 10<sup>7</sup>. Indeed, at that unique time, the Sun will appear to the receptors to be by far the brightest star of the Milky Way."</ref> However, this means that detectors must be listening to an appropriate range of frequencies, and be in that region of space to which the beam is being sent. Many SETI searches assume that extraterrestrial civilizations will be broadcasting a deliberate signal, like the Arecibo message, in order to be found.

Thus to detect alien civilizations through their radio emissions, Earth observers either need more sensitive instruments or must hope for fortunate circumstances: that the broadband radio emissions of alien radio technology are much stronger than our own; that one of SETI's programs is listening to the correct frequencies from the right regions of space; or that aliens are deliberately sending focused transmissions in our general direction.

=== Civilizations broadcast detectable radio signals only for a brief period of time ===
It may be that alien civilizations are detectable through their radio emissions for only a short time, reducing the likelihood of spotting them. The usual assumption is that civilizations outgrow radio through technological advance.<ref>{{Cite journal|title=Calculating the probability of detecting radio signals from alien civilizations |journal=International Journal of Astrobiology |volume=5 |issue=2 |pages=143–149 |author=Marko Horvat |date=2007 |arxiv=0707.0011|doi=10.1017/S1473550406003004 }} "There is a specific time interval during which an alien civilization uses radio communications. Before this interval, radio is beyond the civilization's technical reach, and after this interval radio will be considered obsolete."</ref> However, even if radio is not used for communication, it may be used for other purposes such as power transmission from solar power satellites. Such uses may remain visible even after broadcast emission are replaced by less observable technology.<ref>{{cite journal |title=Solar Power Satellites as Interstellar Beacons |author=Stephenson, D. G |bibcode=1984QJRAS..25...80S |journal=[[Quarterly Journal of the Royal Astronomical Society]]|volume=25 |issue=1 |page=80 |date=1984 |publisher=Royal Astronomical Society }}</ref>

More hypothetically, advanced alien civilizations may evolve beyond broadcasting at all in the electromagnetic spectrum and communicate by technologies not developed or used by mankind. Some scientists have hypothesized that advanced civilizations may send [[neutrino]] signals.<ref>{{cite web|url=http://www.bigear.org/vol1no3/neutrino.htm |title=Cosmic Search Vol. 1 No. 3 |publisher=Bigear.org |date=September 21, 2004 |accessdate=July 3, 2010}}</ref> If such signals exist, they could be detectable by [[neutrino detector]]s that are now under construction for other goals.<ref>{{cite journal| last1=Learned| first1=J| last2=Pakvasa| first2=S| last3=Zee| first3=A| title=Galactic neutrino communication| arxiv=0805.2429| journal=Physics Letters B| volume=671| issue=1| pages=15–19| date=2009 |doi=10.1016/j.physletb.2008.11.057| bibcode = 2009PhLB..671...15L }}</ref>

=== They tend to isolate themselves ===
It has been suggested that some advanced beings may divest themselves of physical form, create massive artificial [[simulated reality|virtual environments]], transfer themselves into these environments through [[mind uploading]], and exist totally within virtual worlds, ignoring the external physical universe.<ref>{{cite web| last1=Bostrom| first1=Nick| title=Where Are They?|url=http://www.technologyreview.com/article/409936/where-are-they/page/1/| publisher=MIT Technology Review| accessdate=June 21, 2015| date=April 22, 2008}}</ref>

It may also be that intelligent alien life develop an "increasing disinterest" in their outside world.<ref>{{harvnb|Webb|2002|p=86}}</ref> Possibly any sufficiently advanced society will develop highly engaging media and entertainment well before the capacity for advanced space travel, and that the rate of appeal of these social contrivances is destined, because of their inherent reduced complexity, to overtake any desire for complex, expensive endeavors such as space exploration and communication. Once any sufficiently advanced civilization becomes able to master its environment, and most of its physical needs are met through technology, various "social and entertainment technologies", including virtual reality, are postulated to become the primary drivers and motivations of that civilization.<ref>Webb, Chapter 15: "They Stay at Home and Surf the Web"</ref>

=== They are too alien ===
[[File:TerrestrialMicrowaveWindow.jpg|thumb|350px|Microwave window as seen by a ground-based system. From NASA report SP-419: SETI – the Search for Extraterrestrial Intelligence]]
Another possibility is that human theoreticians have underestimated how much alien life might differ from that on Earth. Aliens may be psychologically unwilling to attempt to communicate with human beings. Perhaps human [[mathematics]] is parochial to Earth and not shared by other life,<ref>Schombert, James. [http://abyss.uoregon.edu/~js/cosmo/lectures/lec28.html "Fermi's paradox (i.e. Where are they?)"] ''Cosmology Lectures'', University of Oregon.</ref> though others argue this can only apply to abstract math since the math associated with physics must be similar (in results, if not in methods).<ref>{{cite journal |title=Mathematics on a distant planet |author=Hamming, RW |journal=The American Mathematical Monthly |volume=105 |issue=7 |pages=640–650 |date=1998 |publisher=|jstor=2589247|doi=10.2307/2589247 }}</ref>

Physiology might also cause a communication barrier. Carl Sagan speculated that an alien species might have a thought process orders of magnitude slower (or faster) than ours.{{Citation needed|date=August 2016}} A message broadcast by that species might well seem like random background noise to us, and therefore go undetected.

Another thought is that technological civilizations invariably experience a [[technological singularity]] and attain a [[Postbiological evolution|post-biological]] character. Hypothetical civilizations of this sort may have advanced drastically enough to render communication impossible.<ref>{{cite book| last1=Long| first1=K. F.| title=Deep Space Propulsion: A Roadmap to Interstellar Flight| isbn=978-1-4614-0607-5| page=114| url=https://books.google.de/books?id=EAD2-GrarkEC&pg=PA114&dq=fermi+paradox+technological+singularity| accessdate=June 23, 2015| date=November 25, 2011}}</ref><ref>{{cite book| last1=Cook| first1=Stephen P.| title=Life on Earth and other Planetary Bodies| isbn=978-94-007-4966-5| page=54| chapter=SETI: Assessing Imaginative Proposals}}</ref>

=== Everyone is listening, no one is transmitting ===
Alien civilizations might be technically capable of contacting Earth, but are only listening instead of transmitting.<ref name=webbwhere>{{cite book| last1=Webb| first1=Stephen| title=If the Universe Is Teeming with Aliens … WHERE IS EVERYBODY?: Fifty Solutions to the Fermi Paradox and the Problem of Extraterrestrial Life| isbn=978-0-387-95501-8|url=https://books.google.de/books?id=Y111CQAAQBAJ&pg=PA148&lpg=PA148&dq=fermi+paradox+everybody+listening+nobody+sending| accessdate=June 21, 2015| date=May 18, 2015}}</ref> If all, or even most, civilizations act the same way, the galaxy could be full of civilizations eager for contact, but everyone is listening and no one is transmitting. This is the so-called ''[[SETI]] Paradox''.<ref>{{cite arXiv |eprint=physics/0611283 |title=The SETI paradox |author=Alexander Zaitsev |class=physics.gen-ph |date=2006}}</ref>

The only civilization we know, our own, does not [[Active SETI|explicitly transmit]], except for a few small efforts.<ref name=webbwhere /> Even these efforts, and certainly any attempt to expand them, are controversial.<ref>{{cite news |title=Should We Call the Cosmos Seeking ET? Or Is That Risky? |url=https://www.nytimes.com/aponline/2015/02/13/science/ap-us-sci-calling-the-cosmos.html |newspaper=The New York Times |date=February 13, 2015}}</ref> It is not even clear we would respond to a detected signal—the official policy within the SETI community<ref>{{cite web |url=http://www.seti.org/post-detection.html |title=Declaration of Principles Concerning Activities Following the Detection of Extraterrestrial Intelligence }}</ref> is that "[no] response to a signal or other evidence of extraterrestrial intelligence should be sent until appropriate international consultations have taken place." However, given the possible impact of any reply<ref>{{cite journal | last1 = Michaud | first1 = M. | title = Ten decisions that could shake the world | doi = 10.1016/S0265-9646(03)00019-5 | journal = Space Policy | volume = 19 | issue = 2 | pages = 131–950 | year = 2003 | pmid = | pmc = }}</ref> it may be very difficult to obtain any consensus on "Who speaks for Earth?" and "What should we say?"

=== Earth is deliberately not contacted===
{{main article|Zoo hypothesis}}
[[File:Matrix sphere.jpg|thumb|Schematic representation of a planetarium simulating the universe to humans. The "[[reality|real]]" universe is outside the black sphere, the simulated one projected on/filtered through it.]]

The [[zoo hypothesis]] states that intelligent extraterrestrial life exists and does not contact life on Earth to allow for its natural evolution and development.<ref>{{cite journal| last1=Ball| first1=J| title=The zoo hypothesis| journal=Icarus| volume=19|issue=3|pages=347–349|date=1973| doi=10.1016/0019-1035(73)90111-5| bibcode=1973Icar...19..347B}}</ref> This hypothesis may break down under the [[uniformity of motive]] flaw: all it takes is a single culture or civilization to decide to act contrary to the imperative within our range of detection for it to be abrogated, and the probability of such a violation increases with the number of civilizations.<ref name=cr />

Analysis of the inter-arrival times between civilizations in the galaxy based on common astrobiological assumptions suggests that the initial civilization would have a commanding lead over the later arrivals. As such, it may have established what we call the ''zoo hypothesis'' through force or as a galactic/universal norm and the resultant "paradox" by a cultural [[founder effect]] with or without the continued activity of the founder.<ref>Hair, Thomas W. (2011). "Temporal Dispersion of the Emergence of Intelligence: An Inter-arrival Time Analysis", ''International Journal of Astrobiology'' 10(2): 131–135 (2011), {{DOI|10.1017/S1473550411000024}} [http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8143571]</ref>

=== Earth is purposely isolated (planetarium hypothesis) ===
{{Main article|Planetarium hypothesis}}

A related idea to the zoo hypothesis is that, beyond a certain distance, the perceived universe is a [[simulated reality]]. The planetarium hypothesis<ref>{{cite journal|author=Baxter, Stephen|date=2001 |title=The Planetarium Hypothesis: A Resolution of the Fermi Paradox| journal=Journal of the British Interplanetary Society| volume= 54|issue=5/6|pages=210–216|bibcode = 2001JBIS...54..210B }}</ref> speculates that beings may have created this simulation so that the universe appears to be empty of other life.

=== It is dangerous to communicate ===
An alien civilization might feel it is too dangerous to communicate, either for us or for them. After all, when very different civilizations have met on Earth, the results have often been disastrous for one side or the other, and the same may well apply to interstellar contact. Even contact at a safe distance could lead to infection by computer code<ref>{{cite journal|title=Do potential SETI signals need to be decontaminated? |author=Carrigan, Richard A.|journal=Acta Astronautica |volume=58 |issue=2 |pages=112–117|date=2006 |doi=10.1016/j.actaastro.2005.05.004 |bibcode=2006AcAau..58..112C }}</ref> or even ideas themselves.<ref>{{cite journal| last=Marsden|first=P.| title=Memetics and social contagion: Two sides of the same coin| journal=Journal of Memetics-Evolutionary Models of Information Transmission| date=1998|volume=2| issue=2|pages=171–185| url=http://cfpm.org/jom-emit/1998/vol2/marsden_p.html}}</ref> Perhaps prudent civilizations actively hide not only from Earth but from everyone, out of [[#It is the nature of intelligent life to destroy others|fear of other civilizations]].<ref>{{cite arXiv |title=A Solution to the Fermi Paradox: The Solar System, Part of a Galactic Hypercivilization? |author=Beatriz Gato-Rivera |date=1970 |eprint=physics/0512062 |class=physics.pop-ph}}</ref>

Perhaps the Fermi paradox itself—or the alien equivalent of it—is the reason for any civilization to avoid contact with other civilizations, even if no other obstacles existed. From any one civilization's point of view, it would be unlikely for them to be the first ones to make first contact. Therefore, according to this reasoning, it is likely that previous civilizations faced fatal problems with first contact and doing so should be avoided. So perhaps every civilization keeps quiet because of the possibility that there is a real reason for others to do so.<ref name="Brin" />

=== The Simulation Theory ===
{{Main article|Simulated reality}}

Similar to the Planetarium hypothesis, it is theorized that our perceived reality is a simulation created by more intelligent beings. The creators of this hypothetical simulation may have purposely excluded life other than what has been found on Earth, or have simply not introduced it to humans in the simulation yet. It is also possible that they themselves are more intelligent humans, who also have not come in contact with alien lifeforms.

=== They are here undetected ===
It is possible that a civilization advanced enough to travel between the stars could visit or observe our world while remaining undetected or unrecognized.<ref>{{cite journal |title=What Role Will Extraterrestrials Play in Humanity's Future?
|author=Tough, Allen
|journal=Journal of the British Interplanetary Society
|volume=39
|issue=11
|pages=492–498
|year=1986
|url=http://ww.w.ieti.org/articles/future.pdf |bibcode=1986JBIS...39..491T
}}</ref>

=== They are here unacknowledged ===
{{Main article|UFO conspiracy theory}}
A significant fraction of the population believes that at least some [[UFOs]] (Unidentified Flying Objects) are spacecraft piloted by aliens.<ref>{{cite web |url=http://news.discovery.com/space/why-do-people-believe-in-ufos-120810.htm |title=Why Do People Believe in UFOs? |date=August 10, 2012 |author=Ray Villard |publisher=Discovery News}}</ref><ref>{{cite web |url=http://www.huffingtonpost.com/2012/10/15/alien-believers-outnumber-god_n_1968259.html |title=More Believe in Space Aliens Than in God According To U.K. Survey |author=Paul Speigel |publisher=Huffington Post |date=October 18, 2012}}</ref> While most of these are unrecognized or mistaken interpretations of mundane phenomena, there are those that remain puzzling even after investigation. The consensus scientific view is that although they may be unexplained, they do not rise to the level of convincing evidence.<ref>{{cite journal |title=UFOs, UAPs and CRAPs
|author=Shermer, Michael
|journal=Scientific American
|volume=304
|issue=4
|pages=90–90
|year=2011
|publisher=Nature Publishing Group
|url=http://www.nature.com/scientificamerican/journal/v304/n4/full/scientificamerican0411-90.html
|doi=10.1038/scientificamerican0411-90}}</ref>

Similarly, it is theoretically possible that SETI groups are not reporting positive detections, or governments have been blocking signals or suppressing publication. This response might be attributed to security or economic interests from the potential use of advanced extraterrestrial technology. It has been suggested that the detection of an extraterrestrial radio signal or technology could well be the most highly secret information that exists.<ref>{{cite journal |author=A. Tough |title=A critical examination of factors that might encourage secrecy |journal=Acta Astronautica |issue=21, |date=1990 |pages=97–102 |doi=10.1016/0094-5765(90)90134-7 |volume=21|bibcode = 1990AcAau..21...97T }}</ref> Claims that this has already happened are common in the popular press,<ref>{{cite web |url=http://www.theregister.co.uk/2006/07/31/signals_seti/ |title=SETI urged to fess up over alien signals |publisher=The Register |author=Ashlee Vance | date=July 31, 2006}}</ref><ref>{{cite web |url=http://www.huffingtonpost.com/2011/12/06/new-round-of-ufo-white-house-fight_n_1125873.html |title=UFO Hunters Keep Pressing White House For Answers Through 'We The People' Petitions |publisher=The Huffington Post |date=December 6, 2011}}</ref> but the scientists involved report the opposite experience—the press becomes informed and interested in a potential detection even before a signal can be confirmed.<ref>{{cite book |author=G. Seth Shostak |title=Confessions of an Alien Hunter: A Scientist's Search for Extraterrestrial Intelligence |publisher=National Geographic |isbn=978-1-4262-0392-3 |date=2009}} Page 17.</ref>

== See also ==
{{div col|cols=2}}
* [[Abiogenesis]]
* [[Anthropic principle]]
* [[Astrobiology]]
* [[Extraterrestrial hypothesis]]
* [[Fermi problem]]
* [[Great Filter]]
* [[Interstellar travel]]
* [[Olbers' paradox]]
* [[Rare Earth hypothesis]]
* [[Wow! signal]]
{{div col end}}

== References ==
{{Reflist|colwidth=30em}}

== Bibliography ==
* {{cite book |title=The Extraterrestrial Life Debate, Antiquity to 1915 |last=Crowe |first=Michael J. |publisher=University of Notre Dame Press |date=2008 |isbn=978-0-268-02368-3 |ref=harv}}
* {{cite book |last=Shklovskii |first=Iosif |author-link=Iosif Shklovsky |last2=Sagan |first2=Carl |author2-link=Carl Sagan |title=Intelligent Life in the Universe |location=San Francisco |isbn=1-892803-02-X |publisher=Holden–Day |date=1966 |ref=harv}}
* {{cite book |last=Webb |first=Stephen |title=If the Universe Is Teeming with Aliens... Where Is Everybody? Fifty solutions to the Fermi Paradox and the Problem of Extraterrestrial Life|publisher=Copernicus Books |date = 2002 |isbn = 0-387-95501-1 |url=https://books.google.com/books?id=UhzjBwAAQBAJ |ref=harv}}
* {{cite book |last=Webb |first=Stephen |title=If the Universe Is Teeming with Aliens... Where Is Everybody? Seventy five Solutions to the Fermi Paradox and the Problem of Extraterrestrial Life |edition=2nd |publisher=Copernicus Books |date = 2015 |isbn = 978-3-319-13235-8 |url=https://books.google.com/books?id=QWKyrQEACAAJ |ref=harv}}

== Further reading ==
*{{cite news|url=http://supercommunity.e-flux.com/texts/the-great-silence/|work=e-flux journal|edition=56th Biennial – Planetary Computing (Is the Universe Actually a Gigantic Computer?)|date= May 8, 2015|authors=Allora & Calzadilla & Chiang, Ted |title=The Great Silence}}
* {{cite news|url=http://www.astrobio.net/news/article242.html|title= Fermi Paradox debate|work=Astrobiology Magazine|date= July 2002|authors=Meyer, Michael & Drake, Frank & McKay, Christopher & Brownlee, Donald & Grinspoon, David }}
* {{cite book|last = Michaud|first = Michael|title = Contact with Alien Civilizations: Our Hopes and Fears about Encountering Extraterrestrials|publisher = Copernicus Books|date = 2006|isbn = 978-0-387-28598-6}}
* {{cite news|url=https://www.theguardian.com/science/story/0,,1993006,00.html|title= So much space, so little time: why aliens haven't found us yet|author=Sample, Ian |work=The Guardian|date= January 18, 2007}}
* {{cite book|author=[[Benjamin Zuckerman|Zuckerman, Ben]] & Hart, Michael H. |title= Extraterrestrials: Where Are They? |isbn=0-521-44803-4 }}

== External links ==
{{Spoken Wikipedia-3|2008-05-29|Fermi paradox 1.ogg|Fermi paradox 2.ogg|Fermi paradox 3.ogg}}
{{Commons category}}
* {{wiktionary-inline|Fermi paradox}}
* {{cite book|url=http://www.setileague.org/press/silence.htm |edition=Translation of the documenary |title=Overcome the Great Silence|author= [[Aleksandr Leonidovich Zaitsev|Leonidovich Zaitsev, Aleksandr]] (Translator) }}
* {{cite web|url=https://www.youtube.com/watch?v=6UuSxiCJ0co |title=The Cross of the Moment}} (Film about Fermi’s Paradox, climate change, capitalism, and collapse.)

Έκδοση από την 06:39, 15 Ιουλίου 2017

A graphical representation of the Arecibo message—Humanity's first attempt to use radio waves to actively communicate its existence to alien civilizations

The Fermi paradox or Fermi's paradox, named after physicist Enrico Fermi, is the apparent contradiction between the lack of evidence and high probability estimates, e.g., those given by the Drake equation, for the existence of extraterrestrial civilizations.[1] The basic points of the argument, made by physicists Enrico Fermi (1901–1954) and Michael H. Hart (born 1932), are:

  • There are billions of stars in the galaxy that are similar to the Sun,[2][3] many of which are billions of years older than Earth.[4][5]
  • With high probability, some of these stars will have Earth-like planets,[6][7] and if the Earth is typical, some might develop intelligent life.
  • Some of these civilizations might develop interstellar travel, a step the Earth is investigating now.
  • Even at the slow pace of currently envisioned interstellar travel, the Milky Way galaxy could be completely traversed in a few million years.[8]

According to this line of reasoning, the Earth should have already been visited by extraterrestrial aliens. In an informal conversation, Fermi noted no convincing evidence of this, leading him to ask, "Where is everybody?"[9][10] There have been many attempts to explain the Fermi paradox,[11][12] primarily either suggesting that intelligent extraterrestrial life is extremely rare or proposing reasons that such civilizations have not contacted or visited Earth.

Enrico Fermi (1901–1954)

Basis

The Fermi paradox is a conflict between arguments of scale and probability that seem to favor intelligent life being common in the universe, and a total lack of evidence of intelligent life having ever arisen anywhere other than on the Earth.

The first aspect of the Fermi paradox is a function of the scale or the large numbers involved: there are an estimated 200–400 billion stars in the Milky Way[13] (2–4 × 1011) and 70 sextillion (7×1022) in the observable universe.[14] Even if intelligent life occurs on only a minuscule percentage of planets around these stars, there might still be a great number of extant civilizations, and if the percentage were high enough it would produce a significant number of extant civilizations in the Milky Way. This assumes the mediocrity principle, by which the Earth is a typical planet.

The second aspect of the Fermi paradox is the argument of probability: given intelligent life's ability to overcome scarcity, and its tendency to colonize new habitats, it seems possible that at least some civilizations would be technologically advanced, seek out new resources in space, and colonize their own star system and, subsequently, surrounding star systems. Since there is no significant evidence on Earth or elsewhere in the known universe of other intelligent life after 13.8 billion years of the universe's history, then there is a conflict requiring a resolution. Some examples of possible resolutions are that intelligent life is rarer than we think, that our assumptions about the general development or behavior of intelligent species are flawed, or, more radically, that our current scientific understanding of the nature of the universe itself is quite incomplete.

The Fermi paradox can be asked in two ways.[15] The first is, "Why are no aliens or their artifacts found here on Earth, or in the Solar System?" If interstellar travel is possible, even the "slow" kind nearly within the reach of Earth technology, then it would only take from 5 million to 50 million years to colonize the galaxy.[16] This is relatively brief on a geological scale, let alone a cosmological one. Since there are many stars older than the Sun, and since intelligent life might have evolved earlier elsewhere, the question then becomes why the galaxy has not been colonized already. Even if colonization is impractical or undesirable to all alien civilizations, large-scale exploration of the galaxy could be possible by probes. These might leave detectable artifacts in the Solar System, such as old probes or evidence of mining activity, but none of these have been observed.

The second form of the question is "Why do we see no signs of intelligence elsewhere in the universe?" This version does not assume interstellar travel, but includes other galaxies as well. For distant galaxies, travel times may well explain the lack of alien visits to Earth, but a sufficiently advanced civilization could potentially be observable over a significant fraction of the size of the observable universe.[17] Even if such civilizations are rare, the scale argument indicates they should exist somewhere at some point during the history of the universe, and since they could be detected from far away over a considerable period of time, many more potential sites for their origin are within range of our observation. It is unknown whether the paradox is stronger for our galaxy or for the universe as a whole.[18]

Criticism of logical basis

The Fermi paradox has been criticized as being based on an inappropriate use of propositional logic. According to a 1985 paper by Robert Freitas, when recast as a statement in modal logic, the paradox no longer exists, and carries no probative value.[19]

History and name

Los Alamos National Laboratory

In 1950, while working at Los Alamos National Laboratory, Fermi had a casual conversation while walking to lunch with colleagues Emil Konopinski, Edward Teller and Herbert York.[20] The men discussed a recent spate of UFO reports and an Alan Dunn cartoon[21] facetiously blaming the disappearance of municipal trashcans on marauding aliens. The conversation shifted to other subjects, until during lunch Fermi suddenly exclaimed, "Where are they?" (alternatively, "Where is everybody?"). Teller remembers, "The result of his question was general laughter because of the strange fact that in spite of Fermi's question coming from the clear blue, everybody around the table seemed to understand at once that he was talking about extraterrestrial life."[22] Herbert York recalls that Fermi followed up on his comment with a series of calculations on the probability of Earth-like planets, the probability of life, the likely rise and duration of high technology, etc., and concluded that we ought to have been visited long ago and many times over.

Although Fermi's name is most commonly associated with the paradox, he was not the first to ask the question. An earlier implicit mention was by Konstantin Tsiolkovsky in an unpublished manuscript from 1933.[23] He noted "people deny the presence of intelligent beings on the planets of the universe" because "(i) if such beings exist they would have visited Earth, and (ii) if such civilizations existed then they would have given us some sign of their existence." This was not a paradox for others, who took this to imply the absence of ETs, but it was for him, since he himself was a strong believer in extraterrestrial life and the possibility of space travel. Therefore, he proposed what is now known as the zoo hypothesis and speculated that mankind is not yet ready for higher beings to contact us.[24] That Tsiolkovsky himself may not have been the first to discover the paradox is suggested by his above-mentioned reference to other people's reasons for denying the existence of extraterrestrial civilizations.

Michael H. Hart published in 1975 a detailed examination of the paradox,[8] which has since become a theoretical reference point for much of the research into what is now sometimes known as the Fermi–Hart paradox.[25] Geoffrey A. Landis prefers that name on the grounds that "while Fermi is credited with first asking the question, Hart was the first to do a rigorous analysis showing that the problem is not trivial, and also the first to publish his results".[26] Robert H. Gray argues that the term Fermi paradox is a misnomer, since in his view it is neither a paradox nor due to Fermi; he instead prefers the name Hart–Tipler argument, acknowledging Michael Hart as its originator, but also the substantial contribution of Frank J. Tipler in extending Hart's arguments.[27]

Other names closely related to Fermi's question ("Where are they?") include the Great Silence,[28][29][30][31] and silentium universi[31] (Latin for "silence of the universe"), though these only refer to one portion of the Fermi Paradox, that we see no evidence of other civilizations.

Drake equation

Πρότυπο:Main article

The theories and principles in the Drake equation are closely related to the Fermi paradox.[32] The equation was formulated by Frank Drake in 1961 in an attempt to find a systematic means to evaluate the numerous probabilities involved in the existence of alien life. The speculative equation considers the rate of star formation in the galaxy; the fraction of stars with planets and the number per star that are habitable; the fraction of those planets that develop life; the fraction that develop intelligent life; the fraction that have detectable, technological intelligent life; and finally the length of time such communicable civilizations are detectable. The fundamental problem is that the last four terms are completely unknown, rendering statistical estimates impossible.

The Drake equation has been used by both optimists and pessimists, with wildly differing results. The original meeting, including Frank Drake and Carl Sagan, speculated that the number of civilizations was roughly equal to the lifetime in years, and there were probably between 1000 and 100,000,000 civilizations in the Milky Way galaxy.[33] Conversely, Frank Tipler and John D. Barrow used pessimistic numbers and speculated that the average number of civilizations in a galaxy is much less than one.[34]

Empirical projects

There are two parts of the Fermi paradox that rely on empirical evidence—that there are many potential habitable planets, and that we see no evidence of life. The first point, that many suitable planets exist, was an assumption in Fermi's time that is gaining ground with the discovery of many exoplanets, and models predicting billions of habitable worlds in our galaxy.[35]

The second part of the paradox, that we see no evidence of extraterrestrial life, is also an active field of scientific research. This includes both efforts to find any indication of life,[36] and efforts specifically directed to finding intelligent life. These searches have been made since 1960, and several are ongoing.[37]

Mainstream astronomy and SETI

An artist's depiction of the "little green man" described in the novel Martians, Go Home

Although astronomers do not usually search for extraterrestrials, they have observed phenomena that they could not immediately explain without positing an intelligent civilization as the source. For example, pulsars, when first discovered in 1967, were called little green men (LGM) because of the precise repetition of their pulses.[38] In all cases, explanations with no need for intelligent life have been found for such observations,[39] but the possibility of discovery remains.[40] Proposed examples include asteroid mining that would change the appearance of debris disks around stars,[41] or spectral lines from nuclear waste disposal in stars.[42] An ongoing example is the unusual transit light curves of star KIC 8462852, where natural interpretations are not fully convincing.[43] Although most likely a natural explanation will emerge, some scientists are investigating the remote possibility that it could be a sign of alien technology, such as a Dyson swarm.[44][45][46]

Electromagnetic emissions

Πρότυπο:Further information

Radio telescopes are often used by SETI projects

Radio technology and the ability to construct a radio telescope are presumed to be a natural advance for technological species,[47] theoretically creating effects that might be detected over interstellar distances. The careful searching for non-natural radio emissions from space may lead to the detection of alien civilizations. Sensitive alien observers of the Solar System, for example, would note unusually intense radio waves for a G2 star due to Earth's television and telecommunication broadcasts. In the absence of an apparent natural cause, alien observers might infer the existence of a terrestrial civilization. It should be noted however that the most sensitive radio telescopes currently available on Earth would not be able to detect non-directional radio signals even at a fraction of a light-year, so it is questionable whether any such signals could be detected by an extraterrestrial civilization. Such signals could be either "accidental" by-products of a civilization, or deliberate attempts to communicate, such as the Arecibo message. A number of astronomers and observatories have attempted and are attempting to detect such evidence, mostly through the SETI organization. Several decades of SETI analysis have not revealed any unusually bright or meaningfully repetitive radio emissions.

Direct planetary observation

A composite picture of Earth at night, created with data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS). Large-scale artificial lighting produced by the human civilization is detectable from space.

Exoplanet detection and classification is a very active sub-discipline in astronomy, and the first possibly terrestrial planet discovered within a star's habitable zone was found in 2007.[48] New refinements in exoplanet detection methods, and use of existing methods from space (such as the Kepler Mission, launched in 2009) are starting to detect and characterize Earth-size planets, and determine if they are within the habitable zones of their stars. Such observational refinements may allow us to better gauge how common potentially habitable worlds are.[49]

Conjectures about interstellar probes

Πρότυπο:Further information

Self-replicating probes could exhaustively explore a galaxy the size of the Milky Way in as little as a million years.[8] If even a single civilization in the Milky Way attempted this, such probes could spread throughout the entire galaxy. Another speculation for contact with an alien probe—one that would be trying to find human beings—is an alien Bracewell probe. Such a hypothetical device would be an autonomous space probe whose purpose is to seek out and communicate with alien civilizations (as opposed to Von Neumann probes, which are usually described as purely exploratory). These were proposed as an alternative to carrying a slow speed-of-light dialogue between vastly distant neighbors. Rather than contending with the long delays a radio dialogue would suffer, a probe housing an artificial intelligence would seek out an alien civilization to carry on a close-range communication with the discovered civilization. The findings of such a probe would still have to be transmitted to the home civilization at light speed, but an information-gathering dialogue could be conducted in real time.[50]

Attempts to find alien probes

Direct exploration of the Solar System has yielded no evidence indicating a visit by aliens or their probes. Detailed exploration of areas of the Solar System where resources would be plentiful may yet produce evidence of alien exploration,[51][52] though the entirety of the Solar System is vast and difficult to investigate. Attempts to signal, attract, or activate hypothetical Bracewell probes in Earth's vicinity have not succeeded.[53]

Conjectures about stellar-scale artifacts

Πρότυπο:Further information

A variant of the speculative Dyson sphere. Such large scale artifacts would drastically alter the spectrum of a star.

In 1959, Freeman Dyson observed that every developing human civilization constantly increases its energy consumption, and, he conjectured, a civilization might try to harness a large part of the energy produced by a star. He proposed that a Dyson sphere could be a possible means: a shell or cloud of objects enclosing a star to absorb and utilize as much radiant energy as possible. Such a feat of astroengineering would drastically alter the observed spectrum of the star involved, changing it at least partly from the normal emission lines of a natural stellar atmosphere to those of black body radiation, probably with a peak in the infrared. Dyson speculated that advanced alien civilizations might be detected by examining the spectra of stars and searching for such an altered spectrum.[54][55][56]

There have been some attempts to find evidence of the existence of Dyson spheres that would alter the spectra of their core stars.[57] Direct observation of thousands of galaxies has shown no explicit evidence of artificial construction or modifications.[55][56][58][59] In October 2015, there was some speculation that a pattern of light from star KIC 8462852, observed by the Kepler Space Telescope, could have been a result of Dyson sphere construction.[60][61]

Hypothetical explanations for the paradox

Extraterrestrial life is rare or non-existent

Πρότυπο:Main article Those who think that intelligent extraterrestrial life is (nearly) impossible argue that the conditions needed for the evolution of life—or at least the evolution of biological complexity—are rare or even unique to Earth. Under this assumption, called the rare Earth hypothesis, a rejection of the mediocrity principle, complex multicellular life is regarded as exceedingly unusual.[62]

The Rare Earth hypothesis argues that the evolution of biological complexity requires a host of fortuitous circumstances, such as a galactic habitable zone, a central star and planetary system having the requisite character, the circumstellar habitable zone, a right sized terrestrial planet, the advantage of a giant guardian like Jupiter and a large natural satellite, conditions needed to ensure the planet has a magnetosphere and plate tectonics, the chemistry of the lithosphere, atmosphere, and oceans, the role of "evolutionary pumps" such as massive glaciation and rare bolide impacts, and whatever led to the appearance of the eukaryote cell, sexual reproduction and the Cambrian explosion.

No other intelligent species have arisen

It is possible that even if complex life is common, intelligence (and consequently civilizations) is not.[63] While there are remote sensing techniques that could perhaps detect life-bearing planets without relying on the signs of technology,[64][65] none of them has any ability to tell if any detected life is intelligent. This is sometimes referred to as the "algae vs. alumnae" problem.[66]

Intelligent alien species lack advanced technology

It may be that while alien species with intelligence exist, they are primitive or have not reached the level of technological advancement necessary to communicate. Along with non-intelligent life, such civilizations would be also very difficult for us to detect.[66] To skeptics, the fact that in the history of life on the Earth only one species has developed a civilization to the point of being capable of spaceflight and radio technology, lends more credence to the idea that technologically advanced civilizations are rare in the universe.[67]

It is the nature of intelligent life to destroy itself

A 23-kiloton tower shot called BADGER, fired as part of the Operation Upshot–Knothole nuclear test series.

This is the argument that technological civilizations may usually or invariably destroy themselves before or shortly after developing radio or spaceflight technology. Possible means of annihilation are many,[68] including war, accidental environmental contamination or damage, resource depletion, climate change,[69] or poorly designed artificial intelligence. This general theme is explored both in fiction and in scientific hypothesizing.[70] In 1966, Sagan and Shklovskii speculated that technological civilizations will either tend to destroy themselves within a century of developing interstellar communicative capability or master their self-destructive tendencies and survive for billion-year timescales.[71] Self-annihilation may also be viewed in terms of thermodynamics: insofar as life is an ordered system that can sustain itself against the tendency to disorder, the "external transmission" or interstellar communicative phase may be the point at which the system becomes unstable and self-destructs.[72]

It is the nature of intelligent life to destroy others

Another hypothesis is that an intelligent species beyond a certain point of technological capability will destroy other intelligent species as they appear. The idea that something, or someone, might be destroying intelligent life in the universe has been explored in the scientific literature.[28] A species might undertake such extermination out of expansionist motives, paranoia, or aggression. In 1981, cosmologist Edward Harrison argued that such behavior would be an act of prudence: an intelligent species that has overcome its own self-destructive tendencies might view any other species bent on galactic expansion as a threat.[73] It has also been suggested that a successful alien species would be a superpredator, as are humans.[74][75]

Periodic extinction by natural events

New life might commonly die out due to runaway heating or cooling on their fledgling planets.[76] On Earth, there have been numerous major extinction events that destroyed the majority of complex species alive at the time; the extinction of the dinosaurs is the best known example. These are thought to have been caused by events such as impact from a large meteorite, massive volcanic eruptions, or astronomical events such as gamma-ray bursts.[77] It may be the case that such extinction events are common throughout the universe and periodically destroy intelligent life, or at least its civilizations, before the species is able to develop the technology to communicate with other species.[78]

Inflation hypothesis and the youngness argument

Cosmologist Alan Guth proposed a multi-verse solution to the Fermi paradox. This hypothesis uses the synchronous gauge probability distribution, with the result that young universes exceedingly outnumber older ones (by a factor of e1037 for every second of age). Therefore, averaged over all universes, universes with civilizations will almost always have just one, the first to develop. However, Guth notes "Perhaps this argument explains why SETI has not found any signals from alien civilizations, but I find it more plausible that it is merely a symptom that the synchronous gauge probability distribution is not the right one."[79]

Intelligent civilizations are too far apart in space or time

NASA's conception of the Terrestrial Planet Finder

It may be that non-colonizing technologically capable alien civilizations exist, but that they are simply too far apart for meaningful two-way communication.[80] If two civilizations are separated by several thousand light-years, it is possible that one or both cultures may become extinct before meaningful dialogue can be established. Human searches may be able to detect their existence, but communication will remain impossible because of distance. It has been suggested that this problem might be ameliorated somewhat if contact/communication is made through a Bracewell probe. In this case at least one partner in the exchange may obtain meaningful information. Alternatively, a civilization may simply broadcast its knowledge, and leave it to the receiver to make what they may of it. This is similar to the transmission of information from ancient civilizations to the present,[81] and humanity has undertaken similar activities like the Arecibo message, which could transfer information about Earth's intelligent species, even if it never yields a response or does not yield a response in time for humanity to receive it. It is also possible that archaeological evidence of past civilizations may be detected through deep space observations.[82]

A related speculation by Sagan and Newman suggests that if other civilizations exist, and are transmitting and exploring, their signals and probes simply have not arrived yet.[83] However, critics have noted that this is unlikely, since it requires that humanity's advancement has occurred at a very special point in time, while the Milky Way is in transition from empty to full. This is a tiny fraction of the lifespan of a galaxy under ordinary assumptions and calculations resulting from them, so the likelihood that we are in the midst of this transition is considered low in the paradox.[84]

It is too expensive to spread physically throughout the galaxy

Many speculations about the ability of an alien culture to colonize other star systems are based on the idea that interstellar travel is technologically feasible. While the current understanding of physics rules out the possibility of faster-than-light travel, it appears that there are no major theoretical barriers to the construction of "slow" interstellar ships, even though the engineering required is considerably beyond our present capabilities. This idea underlies the concept of the Von Neumann probe and the Bracewell probe as a potential evidence of extraterrestrial intelligence.

It is possible, however, that present scientific knowledge cannot properly gauge the feasibility and costs of such interstellar colonization. Theoretical barriers may not yet be understood, and the cost of materials and energy for such ventures may be so high as to make it unlikely that any civilization could afford to attempt it. Even if interstellar travel and colonization are possible, they may be difficult, leading to a colonization model based on percolation theory.[85] Colonization efforts may not occur as an unstoppable rush, but rather as an uneven tendency to "percolate" outwards, within an eventual slowing and termination of the effort given the enormous costs involved and the expectation that colonies will inevitably develop a culture and civilization of their own. Colonization may thus occur in "clusters," with large areas remaining uncolonized at any one time.[85]

If exploration, or backup from a home system disaster, is the primary motive for expansion, then it is possible that mind uploading and similar technologies may reduce the desire to colonize by replacing physical travel with much less-expensive communication.[86] Therefore the first civilization may have physically explored or colonized the galaxy, but subsequent civilizations find it cheaper, faster, and easier to travel by contacting existing civilizations rather than physically exploring or traveling themselves. This leads to little or no physical travel at the current epoch, and only directed communications, which are hard to see except to the intended receiver.

Human beings have not existed long enough

Humanity's ability to detect intelligent extraterrestrial life has existed for only a very brief period—from 1937 onwards, if the invention of the radio telescope is taken as the dividing line—and Homo sapiens is a geologically recent species. The whole period of modern human existence to date is a very brief period on a cosmological scale, and radio transmissions have only been propagated since 1895. Thus, it remains possible that human beings have neither existed long enough nor made themselves sufficiently detectable to be found by extraterrestrial intelligence.[87]

We are not listening properly

There are some assumptions that underlie the SETI programs that may cause searchers to miss signals that are present. Extraterrestrials might, for example, transmit signals that have a very high or low data rate, or employ unconventional (in our terms) frequencies, which would make them hard to distinguish from background noise. Signals might be sent from non-main sequence star systems that we search with lower priority; current programs assume that most alien life will be orbiting Sun-like stars.[88]

The greatest challenge is the sheer size of the radio search needed to look for signals (effectively spanning the entire visible universe), the limited amount of resources committed to SETI, and the sensitivity of modern instruments. SETI estimates, for instance, that with a radio telescope as sensitive as the Arecibo Observatory, Earth's television and radio broadcasts would only be detectable at distances up to 0.3 light-years, less than 1/10 the distance to the nearest star. A signal is much easier to detect if the signal energy is limited to either a narrow range of frequencies, or directed at a specific part of the sky. Such signals could be detected at ranges of hundreds to tens of thousands of light-years distance.[89] However, this means that detectors must be listening to an appropriate range of frequencies, and be in that region of space to which the beam is being sent. Many SETI searches assume that extraterrestrial civilizations will be broadcasting a deliberate signal, like the Arecibo message, in order to be found.

Thus to detect alien civilizations through their radio emissions, Earth observers either need more sensitive instruments or must hope for fortunate circumstances: that the broadband radio emissions of alien radio technology are much stronger than our own; that one of SETI's programs is listening to the correct frequencies from the right regions of space; or that aliens are deliberately sending focused transmissions in our general direction.

Civilizations broadcast detectable radio signals only for a brief period of time

It may be that alien civilizations are detectable through their radio emissions for only a short time, reducing the likelihood of spotting them. The usual assumption is that civilizations outgrow radio through technological advance.[90] However, even if radio is not used for communication, it may be used for other purposes such as power transmission from solar power satellites. Such uses may remain visible even after broadcast emission are replaced by less observable technology.[91]

More hypothetically, advanced alien civilizations may evolve beyond broadcasting at all in the electromagnetic spectrum and communicate by technologies not developed or used by mankind. Some scientists have hypothesized that advanced civilizations may send neutrino signals.[92] If such signals exist, they could be detectable by neutrino detectors that are now under construction for other goals.[93]

They tend to isolate themselves

It has been suggested that some advanced beings may divest themselves of physical form, create massive artificial virtual environments, transfer themselves into these environments through mind uploading, and exist totally within virtual worlds, ignoring the external physical universe.[94]

It may also be that intelligent alien life develop an "increasing disinterest" in their outside world.[95] Possibly any sufficiently advanced society will develop highly engaging media and entertainment well before the capacity for advanced space travel, and that the rate of appeal of these social contrivances is destined, because of their inherent reduced complexity, to overtake any desire for complex, expensive endeavors such as space exploration and communication. Once any sufficiently advanced civilization becomes able to master its environment, and most of its physical needs are met through technology, various "social and entertainment technologies", including virtual reality, are postulated to become the primary drivers and motivations of that civilization.[96]

They are too alien

Microwave window as seen by a ground-based system. From NASA report SP-419: SETI – the Search for Extraterrestrial Intelligence

Another possibility is that human theoreticians have underestimated how much alien life might differ from that on Earth. Aliens may be psychologically unwilling to attempt to communicate with human beings. Perhaps human mathematics is parochial to Earth and not shared by other life,[97] though others argue this can only apply to abstract math since the math associated with physics must be similar (in results, if not in methods).[98]

Physiology might also cause a communication barrier. Carl Sagan speculated that an alien species might have a thought process orders of magnitude slower (or faster) than ours.[εκκρεμεί παραπομπή] A message broadcast by that species might well seem like random background noise to us, and therefore go undetected.

Another thought is that technological civilizations invariably experience a technological singularity and attain a post-biological character. Hypothetical civilizations of this sort may have advanced drastically enough to render communication impossible.[99][100]

Everyone is listening, no one is transmitting

Alien civilizations might be technically capable of contacting Earth, but are only listening instead of transmitting.[101] If all, or even most, civilizations act the same way, the galaxy could be full of civilizations eager for contact, but everyone is listening and no one is transmitting. This is the so-called SETI Paradox.[102]

The only civilization we know, our own, does not explicitly transmit, except for a few small efforts.[101] Even these efforts, and certainly any attempt to expand them, are controversial.[103] It is not even clear we would respond to a detected signal—the official policy within the SETI community[104] is that "[no] response to a signal or other evidence of extraterrestrial intelligence should be sent until appropriate international consultations have taken place." However, given the possible impact of any reply[105] it may be very difficult to obtain any consensus on "Who speaks for Earth?" and "What should we say?"

Earth is deliberately not contacted

Πρότυπο:Main article

Schematic representation of a planetarium simulating the universe to humans. The "real" universe is outside the black sphere, the simulated one projected on/filtered through it.

The zoo hypothesis states that intelligent extraterrestrial life exists and does not contact life on Earth to allow for its natural evolution and development.[106] This hypothesis may break down under the uniformity of motive flaw: all it takes is a single culture or civilization to decide to act contrary to the imperative within our range of detection for it to be abrogated, and the probability of such a violation increases with the number of civilizations.[16]

Analysis of the inter-arrival times between civilizations in the galaxy based on common astrobiological assumptions suggests that the initial civilization would have a commanding lead over the later arrivals. As such, it may have established what we call the zoo hypothesis through force or as a galactic/universal norm and the resultant "paradox" by a cultural founder effect with or without the continued activity of the founder.[107]

Earth is purposely isolated (planetarium hypothesis)

Πρότυπο:Main article

A related idea to the zoo hypothesis is that, beyond a certain distance, the perceived universe is a simulated reality. The planetarium hypothesis[108] speculates that beings may have created this simulation so that the universe appears to be empty of other life.

It is dangerous to communicate

An alien civilization might feel it is too dangerous to communicate, either for us or for them. After all, when very different civilizations have met on Earth, the results have often been disastrous for one side or the other, and the same may well apply to interstellar contact. Even contact at a safe distance could lead to infection by computer code[109] or even ideas themselves.[110] Perhaps prudent civilizations actively hide not only from Earth but from everyone, out of fear of other civilizations.[111]

Perhaps the Fermi paradox itself—or the alien equivalent of it—is the reason for any civilization to avoid contact with other civilizations, even if no other obstacles existed. From any one civilization's point of view, it would be unlikely for them to be the first ones to make first contact. Therefore, according to this reasoning, it is likely that previous civilizations faced fatal problems with first contact and doing so should be avoided. So perhaps every civilization keeps quiet because of the possibility that there is a real reason for others to do so.[28]

The Simulation Theory

Πρότυπο:Main article

Similar to the Planetarium hypothesis, it is theorized that our perceived reality is a simulation created by more intelligent beings. The creators of this hypothetical simulation may have purposely excluded life other than what has been found on Earth, or have simply not introduced it to humans in the simulation yet. It is also possible that they themselves are more intelligent humans, who also have not come in contact with alien lifeforms.

They are here undetected

It is possible that a civilization advanced enough to travel between the stars could visit or observe our world while remaining undetected or unrecognized.[112]

They are here unacknowledged

Πρότυπο:Main article A significant fraction of the population believes that at least some UFOs (Unidentified Flying Objects) are spacecraft piloted by aliens.[113][114] While most of these are unrecognized or mistaken interpretations of mundane phenomena, there are those that remain puzzling even after investigation. The consensus scientific view is that although they may be unexplained, they do not rise to the level of convincing evidence.[115]

Similarly, it is theoretically possible that SETI groups are not reporting positive detections, or governments have been blocking signals or suppressing publication. This response might be attributed to security or economic interests from the potential use of advanced extraterrestrial technology. It has been suggested that the detection of an extraterrestrial radio signal or technology could well be the most highly secret information that exists.[116] Claims that this has already happened are common in the popular press,[117][118] but the scientists involved report the opposite experience—the press becomes informed and interested in a potential detection even before a signal can be confirmed.[119]

See also

References

  1. Krauthammer, C. (December 29, 2011). «Are we alone in the universe?». The Washington Post. http://www.washingtonpost.com/opinions/are-we-alone-in-the-universe/2011/12/29/gIQA2wSOPP_story.html. Ανακτήθηκε στις January 6, 2015. 
  2. «Star (astronomy)». Encyclopædia Britannica.  "With regard to mass, size, and intrinsic brightness, the Sun is a typical star." Technically, the sun is near the middle of the main sequence of the Hertzsprung-Russell diagram. This sequence contains 80–90% of the stars of the galaxy. [1]
  3. Grevesse, N.; Noels, A.; Sauval, A. J. (1996). «Standard abundances». ASP Conference Series 99. http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1996ASPC...99..117G&defaultprint=YES&filetype=.pdf. «The Sun is a normal star, though dispersion exists.» 
  4. Chris Impe (2011). The Living Cosmos: Our Search for Life in the Universe. Cambridge University Press. ISBN 978-0-521-84780-3. , page 282.
  5. Aguirre, V. SilvaΣφάλμα έκφρασης: Μη αναγνωρισμένη λέξη "etal" (2015). «Ages and fundamental properties of Kepler exoplanet host stars from asteroseismology.». Monthly Notices of the Royal Astronomical Society 452 (2): 2127. doi:10.1093/mnras/stv1388. Bibcode2015MNRAS.452.2127S.  Accepted for publication in MNRAS. See Figure 15 in particular.
  6. Schilling, G. (June 13, 2012). «ScienceShot: Alien Earths Have Been Around for a While». Science. http://news.sciencemag.org/2012/06/scienceshot-alien-earths-have-been-around-while. Ανακτήθηκε στις January 6, 2015. 
  7. Buchhave, L. A. (June 21, 2012). «An abundance of small exoplanets around stars with a wide range of metallicities». Nature 486: 375. doi:10.1038/nature11121. PMID 22722196. Bibcode2012Natur.486..375B. 
  8. 8,0 8,1 8,2 Hart, Michael H. (1975). «Explanation for the Absence of Extraterrestrials on Earth». Quarterly Journal of the Royal Astronomical Society 16: 128–135. Bibcode1975QJRAS..16..128H. http://adsabs.harvard.edu/full/1975QJRAS..16..128H. 
  9. Jones, E. M. (1 Μαρτίου 1985). «"Where is everybody?" An account of Fermi's question"» (PDF). Los Alamos National Laboratory. OSTI 785733. Ανακτήθηκε στις 12 Ιανουαρίου 2013. 
  10. Overbye, Dennis (August 3, 2015). «The Flip Side of Optimism About Life on Other Planets». The New York Times. https://www.nytimes.com/2015/08/04/science/space/the-flip-side-of-optimism-about-life-on-other-planets.html. Ανακτήθηκε στις October 29, 2015. 
  11. Webb, Stephen (2015). If the Universe Is Teeming with Aliens... Where Is Everybody? Seventy five Solutions to the Fermi Paradox and the Problem of Extraterrestrial Life (2nd έκδοση). Copernicus Books. ISBN 978-3-319-13235-8. 
  12. Urban, Tim (June 17, 2014). «The Fermi Paradox». Huffington Post. http://www.huffingtonpost.com/wait-but-why/the-fermi-paradox_b_5489415.html. Ανακτήθηκε στις January 6, 2015. 
  13. Cain, Fraser (June 3, 2013). «How Many Stars are There in the Universe?». Universe Today. http://www.universetoday.com/102630/how-many-stars-are-there-in-the-universe/. Ανακτήθηκε στις 2016-05-25. 
  14. Craig, Andrew (July 22, 2003). «Astronomers count the stars». BBC News. http://news.bbc.co.uk/1/hi/sci/tech/3085885.stm. Ανακτήθηκε στις April 8, 2010. 
  15. See Hart for an example of "no aliens are here", and Webb for an example of the more general "We see no signs of intelligence anywhere".
  16. 16,0 16,1 Crawford, I.A., "Where are They? Maybe we are alone in the galaxy after all", Scientific American, July 2000, 38–43, (2000).
  17. Shklovskii & Sagan 1966, σελ. 364
  18. J. Richard Gott, III. «Chapter 19: Cosmological SETI Frequency Standards». Στο: Zuckerman, Ben· Hart, Michael. Extraterrestrials; Where Are They?.  Page 180.
  19. Freitas, Robert A. (1985). «There is no Fermi Paradox». Icarus 62 (3): 518–520. doi:10.1016/0019-1035(85)90192-7. ISSN 00191035. 
  20. Shostak, Seth (25 Οκτωβρίου 2001). «Our Galaxy Should Be Teeming With Civilizations, But Where Are They?». Space.com. Space.com. Αρχειοθετήθηκε από το πρωτότυπο στις 15 Απριλίου 2006. Ανακτήθηκε στις 14 Οκτωβρίου 2014. 
  21. Alan Dunn (20 Μαΐου 1950). «Uncaptioned cartoon». The New Yorker. Ανακτήθηκε στις 19 Αυγούστου 2010. 
  22. Jones, Eric "Where is everybody?", An account of Fermi's question", Los Alamos Technical report LA-10311-MS, March 1985.
  23. Tsiolkovsky, K, 1933, The Planets are Occupied by Living Beings, Archives of the Tsiolkovsky State Museum of the History of Cosmonautics, Kaluga, Russia. See original text in Russian Wikisource.
  24. Lytkin, V., Finney, B., & Alepko, L.; Finney; Alepko (December 1995). «Tsiolkovsky – Russian Cosmism and Extraterrestrial Intelligence». Quarterly Journal of the Royal Astronomical Society 36 (4): 369. Bibcode1995QJRAS..36..369L. 
  25. Wesson, Paul (1990). «Cosmology, extraterrestrial intelligence, and a resolution of the Fermi-Hart paradox». Quarterly Journal of the Royal Astronomical Society 31: 161–170. Bibcode1990QJRAS..31..161W. 
  26. Landis, Geoffrey A. (1998). «The Fermi Paradox: An Approach Based on Percolation Theory». Journal of the British Interplanetary Society 51: 163–166. http://www.geoffreylandis.com/percolation.htp. Ανακτήθηκε στις 2016-06-12. 
  27. Gray, Robert H. (2015). «The Fermi paradox is neither Fermi's nor a paradox». Astrobiology 15 (3): 195–199. doi:10.1089/ast.2014.1247. ISSN 1531-1074. Bibcode2015AsBio..15..195G. 
  28. 28,0 28,1 28,2 Brin, Glen David (1983). «The 'Great Silence': The Controversy Concerning Extraterrestrial Intelligent Life». Quarterly Journal of the Royal Astronomical Society 24: 283–309. Bibcode1983QJRAS..24..283B. 
  29. James Annis (1999). «An Astrophysical Explanation for the Great Silence». arXiv:astro-ph/9901322. 
  30. Bostrom, Nick (2007). In Great Silence there is Great Hope. http://www.nickbostrom.com/papers/fermi.pdf. Ανακτήθηκε στις September 6, 2010. 
  31. 31,0 31,1 Milan M. Ćirković (2009). «Fermi's Paradox – The Last Challenge for Copernicanism?». Serbian Astronomical Journal 178 (178): 1–20. doi:10.2298/SAJ0978001C. Bibcode2009SerAJ.178....1C. 
  32. Gowdy, Robert H., VCU Department of Physics SETI: Search for ExtraTerrestrial Intelligence. The Interstellar Distance Problem, 2008
  33. Drake, F.· Sobel, D. (1992). Is Anyone Out There? The Scientific Search for Extraterrestrial Intelligence. Delta. σελίδες 55–62. ISBN 0-385-31122-2. 
  34. Πρότυπο:BarrowTipler1986
  35. Behroozi, Peter; Peeples, Molly S. (December 1, 2015). «On The History and Future of Cosmic Planet Formation». MNRAS 454 (2): 1811–1817. doi:10.1093/mnras/stv1817. Bibcode2015MNRAS.454.1811B. 
  36. Sohan Jheeta (2013). «Final frontiers: the hunt for life elsewhere in the Universe». Astrophys Space Sci 348: 1–10. doi:10.1007/s10509-013-1536-9. Bibcode2013Ap&SS.348....1J. 
  37. See, for example, the SETI Institute, The Harvard SETI Home Page, or The Search for Extra Terrestrial Intelligence at Berkeley
  38. Wade, Nicholas (1975). «Discovery of pulsars: a graduate student's story». Science 189 (4200): σελ. 358–364. http://www.sciencemag.org/content/189/4200/358.short. 
  39. Pulsars are now attributed to neutron stars, and Seyfert galaxies to an end-on view of the accretion onto the black holes.
  40. «NASA/CP2007-214567: Workshop Report on the Future of Intelligence in the Cosmos» (PDF). NASA. Αρχειοθετήθηκε από το πρωτότυπο (PDF) στις 11 Αυγούστου 2014. 
  41. Duncan Forgan, Martin Elvis; Elvis (March 28, 2011). «Extrasolar Asteroid Mining as Forensic Evidence for Extraterrestrial Intelligence». International Journal of Astrobiology 10 (4): 307–313. doi:10.1017/S1473550411000127. Bibcode2011IJAsB..10..307F. 
  42. Whitmire, Daniel P.; David P. Wright. (1980). «Nuclear waste spectrum as evidence of technological extraterrestrial civilizations». Icarus 42.1: 149–156. doi:10.1016/0019-1035(80)90253-5. Bibcode1980Icar...42..149W. http://www.sciencedirect.com/science/article/pii/0019103580902535. 
  43. Boyajian, T. S.; LaCourse, D. M.; Rappaport, S. A.; Fabrycky, D.; Fischer, D. A.; Gandolfi, D.; Kennedy, G. M.; Liu, M. C. και άλλοι. (April 21, 2016). «Planet Hunters IX. KIC 8462852 – where's the flux?». MNRAS 457 (4): 3988–4004. doi:10.1093/mnras/stw218. Bibcode2016MNRAS.457.3988B. 
  44. Ross Anderson (13 Οκτωβρίου 2015). «The Most Mysterious Star in our Galaxy». The Atlantic. 
  45. Ian O'Neill (14 Οκτωβρίου 2015). «Has Kepler Discovered an Alien Megastructure?». Discovery News. 
  46. Wright, Jason T.; Cartier, Kimberly M. S.; Zhao, Ming; Jontof-Hutter, Daniel; Ford, Eric B. (2015). «The Ĝ Search for Extraterrestrial Civilizations with Large Energy Supplies. IV. The Signatures and Information Content of Transiting Megastructures». The Astrophysical Journal 816: 17. doi:10.3847/0004-637X/816/1/17. 
  47. Mullen, Leslie (2002). «Alien Intelligence Depends on Time Needed to Grow Brains». Astrobiology Magazine. Space.com. Αρχειοθετήθηκε από το πρωτότυπο στις 12 Φεβρουαρίου 2003. Ανακτήθηκε στις 21 Απριλίου 2006. 
  48. Udry, S.; Bonfils, X.; Delfosse, X.; Forveille, T.; Mayor, M.; Perrier, C.; Bouchy, F.; Lovis, C. και άλλοι. (2007). «The HARPS search for southern extra-solar planets». Astronomy and Astrophysics 469 (3): L43. doi:10.1051/0004-6361:20077612. Bibcode2007A&A...469L..43U. Αρχειοθετήθηκε από το πρωτότυπο στις October 8, 2010. https://web.archive.org/web/20101008120426/http://exoplanet.eu/papers/udry_terre_HARPS-1.pdf. 
  49. From «Kepler: About the Mission». NASA.  "The Kepler Mission, NASA Discovery mission #10, is specifically designed to survey a portion of our region of the Milky Way galaxy to discover dozens of Earth-size planets in or near the habitable zone and determine how many of the billions of stars in our galaxy have such planets."
  50. Bracewell, R. N. (1960). «Communications from Superior Galactic Communities». Nature 186 (4726): 670–671. doi:10.1038/186670a0. Bibcode1960Natur.186..670B. 
  51. Papagiannis, M. D. (1978). «Are We all Alone, or could They be in the Asteroid Belt?». Quarterly Journal of the Royal Astronomical Society 19: 277–281. Bibcode1978QJRAS..19..277P. http://adsabs.harvard.edu/full/1978QJRAS..19..277P. 
  52. Robert A. Freitas Jr. (November 1983). «Extraterrestrial Intelligence in the Solar System: Resolving the Fermi Paradox». Journal of the British Interplanetary Society 36: σελ. 496–500. http://www.rfreitas.com/Astro/ResolvingFermi1983.htm. 
  53. Freitas, Robert A Jr; Valdes, F (1985). «The search for extraterrestrial artifacts (SETA)». Acta Astronautica 12 (12): 1027–1034. doi:10.1016/0094-5765(85)90031-1. Bibcode1985AcAau..12.1027F. http://www.sciencedirect.com/science/article/pii/0094576585900311. Ανακτήθηκε στις August 19, 2010. 
  54. Dyson, Freeman J. (1960). «Search for Artificial Stellar Sources of Infra-Red Radiation». Science 131 (3414): 1667–1668. doi:10.1126/science.131.3414.1667. PMID 17780673. Bibcode1960Sci...131.1667D. http://www.islandone.org/LEOBiblio/SETI1.HTM. 
  55. 55,0 55,1 Wright, J. T.; Mullan, B.; Sigurðsson, S.; Povich, M. S. (2014). «The Ĝ Infrared Search for Extraterrestrial Civilizations with Large Energy Supplies. I. Background and Justification». The Astrophysical Journal 792: 26. doi:10.1088/0004-637X/792/1/26. Bibcode2014ApJ...792...26W. 
  56. 56,0 56,1 Wright, J. T.; Griffith, R.; Sigurðsson, S.; Povich, M. S.; Mullan, B. (2014). «The Ĝ Infrared Search for Extraterrestrial Civilizations with Large Energy Supplies. II. Framework, Strategy, and First Result». The Astrophysical Journal 792: 27. doi:10.1088/0004-637X/792/1/27. Bibcode2014ApJ...792...27W. 
  57. «Fermilab Dyson Sphere search program». Fermi National Accelerator Laboratory. Ανακτήθηκε στις 10 Φεβρουαρίου 2008. 
  58. Wright, J. T.; Mullan, B; Sigurdsson, S; Povich, M. S (2014). «The Ĝ Infrared Search for Extraterrestrial Civilizations with Large Energy Supplies. III. The Reddest Extended Sources in WISE». The Astrophysical Journal Supplement Series 217 (2): 25. doi:10.1088/0067-0049/217/2/25. Bibcode2015ApJS..217...25G. 
  59. «Alien Supercivilizations Absent from 100,000 Nearby Galaxies». Scientific American. April 17, 2015. http://www.scientificamerican.com/article/alien-supercivilizations-absent-from-100-000-nearby-galaxies/. 
  60. Andersen, Ross (13 Οκτωβρίου 2015). «The Most Mysterious Star in Our Galaxy». The Atlantic. Ανακτήθηκε στις 13 Οκτωβρίου 2015. 
  61. Williams, Lee (15 Οκτωβρίου 2015). «Astronomers may have found giant alien 'megastructures' orbiting star near the Milky Way». The Independent. Ανακτήθηκε στις 15 Οκτωβρίου 2015. 
  62. Ward, Peter D.· Brownlee, Donald (14 Ιανουαρίου 2000). Rare Earth: Why Complex Life is Uncommon in the Universe (1st έκδοση). Springer. σελ. 368. ISBN 978-0-387-98701-9. 
  63. Lineweaver, Charles H (2008). «Paleontological tests: human-like intelligence is not a convergent feature of evolution». From fossils to astrobiology. Springer, pp. 353–368. 
  64. Steven V. W. Beckwith (2008). «Detecting Life-bearing Extrasolar Planets with Space Telescopes». The Astrophysical Journal (IOP Publishing) 684 (2,): 1404–1415. doi:10.1086/590466. Bibcode2008ApJ...684.1404B. 
  65. Sparks, W.B. and Hough, J. and Germer, T.A. and Chen, F. and DasSarma, S. and DasSarma, P. and Robb, F.T. and Manset, N. and Kolokolova, L. and Reid, N. (2009). «Detection of circular polarization in light scattered from photosynthetic microbes». Proceedings of the National Academy of Sciences (National Acad Sciences) 106 (14–16): 7816. doi:10.1016/j.jqsrt.2009.02.028. http://www.pnas.org/content/early/2009/04/28/0810215106.full.pdf. 
  66. 66,0 66,1 Tarter, Jill (2006). «What is SETI?». Annals of the New York Academy of Sciences 950 (1): 269–75. doi:10.1111/j.1749-6632.2001.tb02144.x. PMID 11797755. Bibcode2001NYASA.950..269T. 
  67. «The Intelligent-Life Lottery». The New York Times. August 18, 2014. https://www.nytimes.com/2014/08/19/science/in-search-for-intelligent-life-consider-the-lottery.html. 
  68. Webb, 2nd edition, 2015, Chapters 36–39.
  69. «Is a Climate Disaster Inevitable?». The New York Times. January 17, 2015. https://www.nytimes.com/2015/01/18/opinion/sunday/is-a-climate-disaster-inevitable.html. 
  70. Bostrom, Nick. «Existential Risks Analyzing Human Extinction Scenarios and Related Hazards». Ανακτήθηκε στις 4 Οκτωβρίου 2009. 
  71. Sagan, Carl. «Cosmic Search Vol. 1 No. 2». Cosmic Search Magazine. Ανακτήθηκε στις 21 Ιουλίου 2015. 
  72. Hawking, Stephen. «Life in the Universe». Public Lectures. University of Cambridge. Αρχειοθετήθηκε από το πρωτότυπο στις 21 Απριλίου 2006. Ανακτήθηκε στις 11 Μαΐου 2006. 
  73. Soter, Steven (2005). «SETI and the Cosmic Quarantine Hypothesis». Astrobiology Magazine. Space.com. Ανακτήθηκε στις 3 Μαΐου 2006. 
  74. Archer, Michael (1989). «Slime Monsters Will Be Human Too». Aust. Nat. Hist 22: 546–547. 
  75. Webb 2002, σελ. 112
  76. «The Aliens Are Silent Because They Are Extinct». Australian National University. January 21, 2016. http://astrobiology.com/2016/01/the-aliens-are-silent-because-they-are-extinct.html. Ανακτήθηκε στις 2016-01-22. 
  77. Melott, A.L. and Lieberman, BS and Laird, CM and Martin, LD and Medvedev, MV and Thomas, BC and Cannizzo, JK and Gehrels, N. and Jackman, CH (2004). «Did a gamma-ray burst initiate the late Ordovician mass extinction?». International Journal of Astrobiology (Cambridge University Press) 3 (1): 55–61. doi:10.1017/S1473550404001910. Bibcode2004IJAsB...3...55M. http://acdb-ext.gsfc.nasa.gov/People/Jackman/Melott_2004.pdf. 
  78. Nick Bostrom· Milan M. Ćirković. «12.5: The Fermi Paradox and Mass Extinctions». Global catastrophic risks. 
  79. Guth, Alan (2007). «Eternal Inflation and its Implications». Journal of Physics A: Mathematical and Theoretical 40 (25): 6811–6826. doi:10.1088/1751-8113/40/25/S25. Bibcode2007JPhA...40.6811G. http://arxiv.org/PS_cache/hep-th/pdf/0702/0702178v1.pdf. 
  80. Webb 2002, σελίδες 62–71
  81. Vakoch, Douglas (15 Νοεμβρίου 2001). «Decoding E.T.: Ancient Tongues Point Way To Learning Alien Languages». SETI Institute. Αρχειοθετήθηκε από το πρωτότυπο στις 23 Μαΐου 2009. Ανακτήθηκε στις 19 Αυγούστου 2010. 
  82. Adam Stevens; Duncan Forgan; Jack O'Malley James (2015). «Observational Signatures of Self–Destructive Civilisations». arXiv:1507.08530 [astro-ph.EP]. 
  83. Newman, W.T.; Sagan, C. (1981). «Galactic civilizations: Population. dynamics and interstellar diffusion». Icarus 46 (3): 293–327. doi:10.1016/0019-1035(81)90135-4. Bibcode1981Icar...46..293N. 
  84. Brin, Glen David (1983). «The 'Great Silence': The Controversy Concerning Extraterrestrial Intelligent Life». Quarterly Journal of the Royal Astronomical Society 24: 287, 298. Bibcode1983QJRAS..24..283B. 
  85. 85,0 85,1 Landis, Geoffrey (1998). «The Fermi Paradox: An Approach Based on Percolation Theory». Journal of the British Interplanetary Society 51: 163–166. Bibcode1998JBIS...51..163L. http://www.sff.net/people/Geoffrey.Landis/percolation.htp. 
  86. Scheffer, L.K. (1994). «Machine Intelligence, the Cost of Interstellar Travel and Fermi's Paradox». Quarterly Journal of the Royal Astronomical Society 35: 157. Bibcode1994QJRAS..35..157S. 
  87. Baum, Seth D., Jacob D. Haqq-Misra, and Shawn D. Domagal-Goldman (2011). «Would contact with extraterrestrials benefit or harm humanity? A scenario analysis». Acta Astronautica 68 (11): 2114–2129. doi:10.1016/j.actaastro.2010.10.012. Bibcode2011AcAau..68.2114B.  "If ETI search for us just as we search for them, i.e. by scanning the sky at radio and optical wavelengths [...] the radiation that has been unintentionally leaking and intentionally transmitted from Earth may have already alerted any nearby ETI to our presence and may eventually alert more distant ETI. Once ETI become alerted to our presence, it will take at least as many years for us to realize that they know."
  88. Turnbull, Margaret C.; Tarter, Jill C. (2003). «Target Selection for SETI. I. A Catalog of Nearby Habitable Stellar Systems». The Astrophysical Journal Supplement Series 145 (1): 181–198. doi:10.1086/345779. Bibcode2003ApJS..145..181T. http://www.projectrho.com/HabCat.pdf. Ανακτήθηκε στις August 19, 2010. 
  89. The Staff at the National Astronomy and Ionosphere Center (December 1975). «The Arecibo message of November, 1974». Icarus 26 (4): 462–466. doi:10.1016/0019-1035(75)90116-5. Bibcode1975Icar...26..462.. http://www.sciencedirect.com/science/article/pii/0019103575901165.  "A radio telescope in M13 operating at the transmission frequency, and pointed toward the Sun at the time the message arrives at the receiving site will observe a flux density from the message which will exceed the flux density of the Sun itself by a factor of roughly 107. Indeed, at that unique time, the Sun will appear to the receptors to be by far the brightest star of the Milky Way."
  90. Marko Horvat (2007). «Calculating the probability of detecting radio signals from alien civilizations». International Journal of Astrobiology 5 (2): 143–149. doi:10.1017/S1473550406003004.  "There is a specific time interval during which an alien civilization uses radio communications. Before this interval, radio is beyond the civilization's technical reach, and after this interval radio will be considered obsolete."
  91. Stephenson, D. G (1984). «Solar Power Satellites as Interstellar Beacons». Quarterly Journal of the Royal Astronomical Society (Royal Astronomical Society) 25 (1): 80. Bibcode1984QJRAS..25...80S. 
  92. «Cosmic Search Vol. 1 No. 3». Bigear.org. 21 Σεπτεμβρίου 2004. Ανακτήθηκε στις 3 Ιουλίου 2010. 
  93. Learned, J; Pakvasa, S; Zee, A (2009). «Galactic neutrino communication». Physics Letters B 671 (1): 15–19. doi:10.1016/j.physletb.2008.11.057. Bibcode2009PhLB..671...15L. 
  94. Bostrom, Nick (22 Απριλίου 2008). «Where Are They?». MIT Technology Review. Ανακτήθηκε στις 21 Ιουνίου 2015. 
  95. Webb 2002, σελ. 86
  96. Webb, Chapter 15: "They Stay at Home and Surf the Web"
  97. Schombert, James. "Fermi's paradox (i.e. Where are they?)" Cosmology Lectures, University of Oregon.
  98. Hamming, RW (1998). «Mathematics on a distant planet». The American Mathematical Monthly 105 (7): 640–650. doi:10.2307/2589247. 
  99. Long, K. F. (25 Νοεμβρίου 2011). Deep Space Propulsion: A Roadmap to Interstellar Flight. σελ. 114. ISBN 978-1-4614-0607-5. Ανακτήθηκε στις 23 Ιουνίου 2015. 
  100. Cook, Stephen P. «SETI: Assessing Imaginative Proposals». Life on Earth and other Planetary Bodies. σελ. 54. ISBN 978-94-007-4966-5. 
  101. 101,0 101,1 Webb, Stephen (18 Μαΐου 2015). If the Universe Is Teeming with Aliens … WHERE IS EVERYBODY?: Fifty Solutions to the Fermi Paradox and the Problem of Extraterrestrial Life. ISBN 978-0-387-95501-8. Ανακτήθηκε στις 21 Ιουνίου 2015. 
  102. Alexander Zaitsev (2006). «The SETI paradox». arXiv:physics/0611283 [physics.gen-ph]. 
  103. «Should We Call the Cosmos Seeking ET? Or Is That Risky?». The New York Times. February 13, 2015. https://www.nytimes.com/aponline/2015/02/13/science/ap-us-sci-calling-the-cosmos.html. 
  104. «Declaration of Principles Concerning Activities Following the Detection of Extraterrestrial Intelligence». 
  105. Michaud, M. (2003). «Ten decisions that could shake the world». Space Policy 19 (2): 131–950. doi:10.1016/S0265-9646(03)00019-5. 
  106. Ball, J (1973). «The zoo hypothesis». Icarus 19 (3): 347–349. doi:10.1016/0019-1035(73)90111-5. Bibcode1973Icar...19..347B. 
  107. Hair, Thomas W. (2011). "Temporal Dispersion of the Emergence of Intelligence: An Inter-arrival Time Analysis", International Journal of Astrobiology 10(2): 131–135 (2011), doi:10.1017/S1473550411000024 [2]
  108. Baxter, Stephen (2001). «The Planetarium Hypothesis: A Resolution of the Fermi Paradox». Journal of the British Interplanetary Society 54 (5/6): 210–216. Bibcode2001JBIS...54..210B. 
  109. Carrigan, Richard A. (2006). «Do potential SETI signals need to be decontaminated?». Acta Astronautica 58 (2): 112–117. doi:10.1016/j.actaastro.2005.05.004. Bibcode2006AcAau..58..112C. 
  110. Marsden, P. (1998). «Memetics and social contagion: Two sides of the same coin». Journal of Memetics-Evolutionary Models of Information Transmission 2 (2): 171–185. http://cfpm.org/jom-emit/1998/vol2/marsden_p.html. 
  111. Beatriz Gato-Rivera (1970). «A Solution to the Fermi Paradox: The Solar System, Part of a Galactic Hypercivilization?». arXiv:physics/0512062 [physics.pop-ph]. 
  112. Tough, Allen (1986). «What Role Will Extraterrestrials Play in Humanity's Future?». Journal of the British Interplanetary Society 39 (11): 492–498. Bibcode1986JBIS...39..491T. http://ww.w.ieti.org/articles/future.pdf. 
  113. Ray Villard (10 Αυγούστου 2012). «Why Do People Believe in UFOs?». Discovery News. 
  114. Paul Speigel (18 Οκτωβρίου 2012). «More Believe in Space Aliens Than in God According To U.K. Survey». Huffington Post. 
  115. Shermer, Michael (2011). «UFOs, UAPs and CRAPs». Scientific American (Nature Publishing Group) 304 (4): 90–90. doi:10.1038/scientificamerican0411-90. http://www.nature.com/scientificamerican/journal/v304/n4/full/scientificamerican0411-90.html. 
  116. A. Tough (1990). «A critical examination of factors that might encourage secrecy». Acta Astronautica 21 (21,): 97–102. doi:10.1016/0094-5765(90)90134-7. Bibcode1990AcAau..21...97T. 
  117. Ashlee Vance (31 Ιουλίου 2006). «SETI urged to fess up over alien signals». The Register. 
  118. «UFO Hunters Keep Pressing White House For Answers Through 'We The People' Petitions». The Huffington Post. 6 Δεκεμβρίου 2011. 
  119. G. Seth Shostak (2009). Confessions of an Alien Hunter: A Scientist's Search for Extraterrestrial Intelligence. National Geographic. ISBN 978-1-4262-0392-3.  Page 17.

Bibliography

Further reading

Πρότυπο:Spoken Wikipedia-3