Μετάβαση στο περιεχόμενο

Χρήστης:Dmtrs32/πρόχειρο: Διαφορά μεταξύ των αναθεωρήσεων

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Περιεχόμενο που διαγράφηκε Περιεχόμενο που προστέθηκε
Χωρίς σύνοψη επεξεργασίας
Γραμμή 1: Γραμμή 1:
{{Use dmy dates|date=February 2013}}
{{Hatnote|Να μην συγχέεται με το [[υποξείδιο του αζώτου]] ή άλλα [[οξείδιο του αζώτου|οξείδια του αζώτου]].}}
[[File:DodgeCatCon.jpg|thumb|A three-way catalytic converter on a gasoline-powered 1996 [[Ram Pickup|Dodge Ram]]]]
{{Chembox
[[File:Catalytic-converter-simulation-velocity-streamlines.jpg|thumb|Simulation of flow inside a catalytic converter]]
| Όνομα = Μονοξείδιο του αζώτου
| ΑρχείοΕικόνας = Nitric-oxide-2D.svg
| ΌνομαΑρχείου = Σκελετικός τύπος του μονοξειδίου του αζώτου με μήκη δεσμών
| ΜέγεθοςΕικόνας = 121
| ΑρχείοΕικόνας_Παραπ = {{chemboximage|correct|??}}
| ΑρχείοΕικόναςΑ1 = Nitric oxide.svg
| ΌνομαΑρχείουΑ1 = Σκελετικός τύπος που δείχνει τρία μονήρη ζεύγος και ένα ασύζευκτο ηλεκτρόνιο
| ΑρχείοΕικόναςΔ1 = Nitric-oxide-3D-vdW.png
| ΌνομαΑρχείουΔ1 = Πρότυπο πλήρωσης χώρου του μονοξειδίου του αζώτου
| ΑρχείοΕικόναςΔ1_Παραπ = {{chemboximage|correct|??}}
<!-- ΟΝΟΜΑΤΑ -->
| ΟνοματολογίαIUPAC = Νιτρικό οξείδιο
| ΠροτιμώμενοΌνομαIUPAC =
| ΣυστηματικήονοματολογίαIUPAC = Οξειδοάζωτο (Oxidonitrogen(•))<ref>{{cite web|title = Nitric Oxide (CHEBI:16480)|url = https://www.ebi.ac.uk/chebi/searchId.do?chebiId=16480|work = Chemical Entities of Biological Interest (ChEBI)|location = UK|publisher = European Bioinformatics Institute}}</ref> (πρόσθετο)
| ΆλλαΟνόματα = Μονοξείδιο του αζώτου<br />
Οξείδιο του αζώτου (ΙΙ)
<!-- ΕΝΟΤΗΤΕΣ -->
| Ενότητα1 = {{Chembox Identifiers
| Προσδέτης_IUPHAR = 2509
| RTECS = QX0525000
| Gmelin = 451
| 3DMet = B00122
| EINECS = 233-271-0
| Αριθμός_UN = 1660
| CASNo = 10102-43-9
| Παραπ_CASNo = {{cascite|correct|CAS}}
| ChEBI = 16480
| Παραπ_ChEBI = {{ebicite|correct|EBI}}
| ChEMBL = 1200689
| Παραπ_ChEMBL = {{ebicite|changed|EBI}}
| ChemSpiderID = 127983
| Παραπ_ChemSpiderID = {{chemspidercite|correct|chemspider}}
| DrugBank = DB00435
| Παραπ_DrugBank = {{drugbankcite|correct|drugbank}}
| StdInChI = 1S/NO/c1-2
| Παραπ_StdInChI = {{stdinchicite|correct|chemspider}}
| StdInChIKey = MWUXSHHQAYIFBG-UHFFFAOYSA-N
| Παραπ_StdInChIKey = {{stdinchicite|correct|chemspider}}
| InChI = 1/NO/c1-2
| InChIKey = MWUXSHHQAYIFBG-UHFFFAOYAI
| KEGG = D00074
| Παραπ_KEGG = {{keggcite|correct|kegg}}
| PubChem = 145068
| SMILES = [N]=O
| UNII = 31C4KY9ESH
| Παραπομπή_UNII = {{fdacite|correct|FDA}}
}}
| Ενότητα2 = {{Chembox Properties
| Σχόλιο_Τύπου =
| N=1 | O=1 <!--(κλπ)-->
| Εμφάνιση = Άχρωμο αέριο
| Πυκνότητα = 1,3402 g dm<sup>−3</sup>
| ΣημΤήξηςC = −164
| ΣημΒρασμούC = −152
| Διαλυτότητα = 0,0098 g/100ml (0&nbsp;°C) <br /> 0,0056 g/100ml (20&nbsp;°C)
| ΣταθΑτμΡυθμούOH =
| ΔείκτηςΔιάθλασης = 1,0002697
}}
| Ενότητα3 = {{Chembox Structure
| ΜοριακόΣχήμα = γραμμικό (ομάδα σημείων C<sub>∞''v''</sub>)
}}
| Ενότητα5 = {{Chembox Thermochemistry
| Εντροπία = 210,76 J K<sup>−1</sup> mol<sup>−1</sup>
| ΔHf = 91,29 kJ mol<sup>−1</sup>
}}
| Ενότητα6 = {{Chembox Pharmacology
| Πρόθεμα_ATCCode = R07
| Κατάληξη_ATCCode = AX01
| Μεταβολισμός = μέσω πνευμονικού τριχοειδούς στρώματος
| Ημιζωή = 2–6 δευτερόλεπτα
}}
| Ενότητα7 = {{Chembox Hazards
| ΕξωτερικόSDS = [http://avogadro.chem.iastate.edu/MSDS/nitric_oxide.pdf External MSDS]
| ΚλάσηΕΕ = {{Hazchem O}} {{Hazchem T}}
| ΦράσειςR = {{R8}}, {{R23}}, {{R34}}, {{R44}}
| ΦράσειςS = {{S1}}, {{S17}}, {{S23}}, {{S36/37/39}}, {{S45}}
| NFPA-F = 0
| NFPA-H = 3
| NFPA-R = 3
| NFPA-S = OX
| LC50 = 315 ppm (κουνέλι, 15 min)<br/>854 ppm (επίμυς, 4 hr)<br/>320 ppm (ποντίκι)<ref name=IDLH>{{IDLH|10102439|Nitric oxide}}</ref>
| LCLo = 2500 ppm (ποντίκι, 12 min)<ref name=IDLH/>
}}
| Ενότητα8 = {{Chembox Related
| ΆλλαΑνιόντα =
| ΆλλαΚατιόντα =
| ΆλληΟυσία = Πεντοξείδιο του διαζώτου<br />
Τετροξείδιο του διαζώτου<br />
Τριοξείδιο του διαζώτου<br />
[[Διοξείδιο του αζώτου]]<br />
[[Υποξείδιο του αζώτου]]<br/>
[[Νιτροξύλιο]] (αναγμένη μορφή)<br/>
[[Υδροξυλαμίνη]] (υδρογονωμένη μορφή)
| Ετικέτα_ΆλληςΟυσίας = [[οξείδιο του αζώτου|Οξείδια του αζώτου]]
| ΆλλεςΕνώσεις =
}}
<!-- ΣΥΜΠΛΗΡΩΜΑ -->
<!-- ΥΠΟΣΕΛΙΔΟ -->
| ΕπιβεβΠεδία = changed
| ΠαρακΠεδία = changed
| Επιβεβrevid = 477001381
}}


A '''catalytic converter''' is an emissions control device that converts toxic gases and [[pollutant]]s in [[exhaust gas]] to less toxic pollutants by [[Catalysis|catalyzing]] a [[redox]] [[Chemical reaction|reaction]] (an oxidation and a reduction reaction). Catalytic converters are used with [[internal combustion engine]]s fueled by either [[petrol]] (gasoline) or [[diesel fuel|diesel]]—including [[lean-burn]] engines as well as kerosene heaters and stoves.
'''Το νιτρικό οξείδιο (Nitric oxide) ή μονοξείδιο του αζώτου ( nitrogen monoxide)''',<ref>[[IUPAC nomenclature of inorganic chemistry 2005]]. [http://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf PDF].</ref> είναι μια [[μόριο|μοριακή]], [[χημική ένωση]] με [[μοριακός τύπος|μοριακό τύπο]] of ·[[άζωτο|N]][[Οξυγόνο|O]]. Ένα από τα κάμποσα [[οξείδιο|οξείδια]] του αζώτου, είναι άχρωμο αέριο σε [[κανονικές συνθήκες|πρότυπες συνθήκες]. Το μονοξείδιο του αζώτου είναι [[χημική ρίζα|ελεύθερη χημική ρίζα]]—δηλαδή, η δεσμική δομή του (bonding structure) περιλαμβάνει περιλαμβάνει ένα ασύζευκτο ηλεκτρόνιο (unpaired electron),<ref>{{cite book|author1=Lund, Anders |author2=Shimada, Shigetaka |author3=Shiotani, Masaru |title=Principles and Applications of ESR Spectroscopy|url=https://books.google.com/books?id=GWUqeLasL88C|date=2011|publisher=Springer|isbn=978-1-4020-5344-3}}</ref> που παριστάνεται με τελεία (·) στο άτομο του αζώτου—και είναι στην κατηγορία των ετεροπυρηνικών [[διατομικό μόριο|διατομικών μορίων]] που έχουν ιστορικό θεωρητικό ενδιαφέρον (για τις ιδέες που έδωσε στη διαμόρφωση των πρώιμων σύγχρονων θεωριών των δεσμών). Είναι ένα ιδιαίτερα σημαντικό ενδιάμεσο προϊόν στη [[χημική βιομηχανία]]. Επιπλέον, κάποια ποσότητα παράγεται αναπόφευκτα κατά την καύση των ορυκτών καυσίμων στα εργοστάσια ηλεκτρικής ενέργειας και στους [[κινητήρας|κινητήρες]] [[αυτοκίνητο|αυτοκινήτων]], με το μεγαλύτερο μέρος να δημιουργείται όταν υπάρχει περισσότερος αέρας ή υψηλότερες θερμοκρασίες από ό,τι απαιτείται για αποτελεσματική και πλήρη καύση του καυσίμου. Παράγεται επίσης στη φύση από τις ακραίες υψηλές θερμοκρασίες του αέρα που παράγονται κατά μήκος της διαδρομής των κεραυνών στις καταιγίδες.


The first widespread introduction of catalytic converters was in the United States [[automobile]] market. To comply with the [[United States Environmental Protection Agency|U.S. Environmental Protection Agency]]'s stricter regulation of exhaust emissions, most gasoline-powered vehicles starting with the 1975 [[model year]] must be equipped with catalytic converters.<ref name='Palucka'>{{cite journal | title = Doing the Impossible | journal = Invention & Technology | date = Winter 2004 | first = Tim | last = Palucka | volume = 19 | issue = 3| url = http://www.americanheritage.com/articles/magazine/it/2004/3/2004_3_22.shtml| accessdate = 14 December 2011 | archiveurl = https://web.archive.org/web/20081203124718/http://www.americanheritage.com/articles/magazine/it/2004/3/2004_3_22.shtml | archivedate = 3 December 2008}}</ref><ref name='Petersen'>{{cite book | last1 = Petersen Publishing | title = The Petersen Automotive Troubleshooting & Repair Manual | chapter = The Catalytic Converter | editors = Erwin M. Rosen | publisher = Grosset & Dunlap | year = 1975 | location = New York, NY | pages = 493 | isbn = 0-448-11946-3 | quote = For years, the exhaust system (...) remained virtually unchanged until 1975 when a strange new component was added. It's called a catalytic converter(...)}}<!--| accessdate = 14 December 2011 --></ref><ref name='GM_advert'>{{cite news | title = General Motors Believes it has an Answer to the Automotive Air Pollution Problem | date = 12 September 1974 | work = The Blade: Toledo, Ohio | accessdate = 14 December 2011 | url = https://news.google.com/newspapers?id=9tBOAAAAIBAJ&sjid=IAIEAAAAIBAJ&dq=catalytic-converter&pg=6404%2C6576523}}</ref><ref name='Sentinel_1974'>{{cite news | title = Catalytic Converter Heads Auto Fuel Economy Efforts | date = 11 November 1974 | work = The Milwaukee Sentinel | accessdate = 14 December 2011 | url = https://news.google.com/newspapers?id=FXVQAAAAIBAJ&sjid=vBEEAAAAIBAJ&dq=catalytic-converter&pg=6134%2C2245045}}</ref> These "two-way" converters combined [[oxygen]] with [[carbon monoxide]] (CO) and [[unburned hydrocarbon]]s (HC) to produce [[carbon dioxide]] (CO<sub>2</sub>) and [[water]] (H<sub>2</sub>O). In 1981, two-way catalytic converters were rendered obsolete by "three-way" converters that also reduce [[NOx|oxides of nitrogen]] (NOx);<ref name=Palucka/> however, two-way converters are still used for lean-burn engines. This is because three-way-converters require either rich or stoichiometric combustion to successfully reduce NOx.
Στα θηλαστικά, συμπεριλαμβανομένων των ανθρώπων, το μονοξείδιο του αζώτου είναι ένα σημαντικό κυτταρικό σηματοδοτικό μόριο (signaling molecule) που εμπλέκεται σε πολλές φυσιολογικές και παθολογικές διεργασίες.<ref>{{cite journal|pmid=10390607|year=1999|last1=Hou|first1=YC|last2=Janczuk|first2=A|last3=Wang|first3=PG|title=Current trends in the development of nitric oxide donors|volume=5|issue=6|pages=417–41|journal=Current pharmaceutical design}}</ref> Είναι ένα ισχυρό αγγειοδιασταλτικό με μικρό χρόνο ημιζωής μερικών δευτερολέπτων στο αίμα. Γνωστά από παλιά φαρμακευτικά σκευάσματα όπως η [[νιτρογλυκερίνη]] και το νιτρώδες αμύλιο (amyl nitrite) βρέθηκαν να είναι πρόδρομες ενώσεις στο μονοξείδιο του αζώτου περισσότερο από έναν αιώνα μετά την πρώτη τους χρήση στην ιατρική. Χαμηλά επίπεδα μονοξειδίου του αζώτου είναι σημαντικά στην προστασία οργάνων όπως το ήπαρ από ισχαιμική βλάβη (ischemic damage). Η παραγωγή μονοξειδίου του αζώτου σχετίζεται με τη μη αλκοολική λιπώδη νόσο του ήπατος (nonalcoholic fatty liver disease ή NAFLD) και είναι βασική για τον ηπατικό λιπιδικό μεταβολισμό σε περίπτωση ασιτίας.<ref>{{cite journal|last1=Gu|first1=Qilin|last2=Yang|first2=Xiaojie|last3=Lin|first3=Li|last4=Li|first4=Shaoyang|last5=Li|first5=Qing|last6=Zhong|first6=Shan|last7=Peng|first7=Jinrong|last8=Cui|first8=Zongbin|title=Genetic ablation of solute carrier family 7a3a leads to hepatic steatosis in zebrafish during fasting|journal=Hepatology|date=December 2014|volume=60|issue=6|pages=1929–1941|doi=10.1002/hep.27356}}</ref>


Although catalytic converters are most commonly applied to [[exhaust system]]s in automobiles, they are also used on [[electrical generator]]s, [[forklift]]s, mining equipment, [[truck]]s, [[bus]]es, [[locomotive]]s and [[motorcycle]]s. They are also used on some wood stoves to control emissions.<ref>{{Cite web|title= Choosing the Right Wood Stove|url=http://www.epa.gov/burnwise/woodstoves.html|work=Burn Wise|publisher=US EPA|accessdate=2 January 2012}}</ref> This is usually in response to [[government]] [[regulation]], either through direct environmental regulation or through health and safety regulations.
Ως συνέπεια της σημασίας του στη [[νευροεπιστήμη]], τη [[φυσιολογία]] και την ανοσολογία (immunology), το μονοξείδιο του αζώτου ανακηρύχθηκε "Μόριο του έτους" το 1992.<ref name="pmid1361684">{{cite journal |author1=Culotta, Elizabeth |author2=Koshland, Daniel E. Jr | year = 1992 | title = NO news is good news | journal = Science | volume = 258 | issue = 5090 | pages = 1862–1864 | doi = 10.1126/science.1361684 | pmid = 1361684 }}</ref> Η αναζήτηση για τις λειτουργίες του οδήγησε στο [[Κατάλογος αποδεκτών Βραβείου Νόμπελ Φυσιολογίας και Ιατρικής#1951.E2.80.932000|βραβείο Νόμπελ 1998]] για την ανακάλυψη του ρόλου του μονοξειδίου του αζώτου ως καρδειοαγγειακό μόριο σηματοδότησης. Το μονοξείδιο του αζώτου δεν πρέπει να συγχέεται με το [[υποξείδιο του αζώτου]] (N<sub>2</sub>O), ένα αναισθητικό, ή με το [[διοξείδιο του αζώτου]] (NO<sub>2</sub>), ένα καφετή [[τοξικότητα|τοξικό]] αέριο και σημαντικός [[Ατμοσφαιρική ρύπανση|ατμοσφαιρικός ρύπος]] που είναι ένα προϊόν στο οποίο οξειδώνεται ταχύτητα στον αέρα το μονοξείδιο του αζώτου.


== History ==
Ταξινομείται ως πολύ επικίνδυνη ουσία στις ΗΠΑ όπως ορίζεται στην ενότητα 302 του Emergency Planning and Community Right-to-Know Act (42 U.S.C. 11002) και υπόκειται σε αυστηρή αναφορά απαιτήσεων από εγκαταστάσεις που παράγουν, αποθηκεύουν, ή το χρησιμοποιούν σε σημαντικές ποσότητες.<ref name="gov-right-know">{{Cite journal | publisher = [[United States Government Publishing Office|Government Printing Office]] | title = 40 C.F.R.: Appendix A to Part 355—The List of Extremely Hazardous Substances and Their Threshold Planning Quantities | url = http://edocket.access.gpo.gov/cfr_2008/julqtr/pdf/40cfr355AppA.pdf | edition = July 1, 2008 | accessdate = October 29, 2011 | postscript=.}}</ref>
The catalytic converter was invented by [[Eugene Houdry]], a French mechanical engineer and expert in catalytic oil refining,<ref name="Csere1988p63">{{Cite journal|last = Csere|first = Csaba|authorlink = Csaba Csere|date=January 1988|title = 10 Best Engineering Breakthroughs|work = [[Car and Driver]]|volume = 33|issue = 7| page= 63}}</ref> who moved to the United States in 1930. When the results of early studies of [[smog]] in Los Angeles were published, Houdry became concerned about the role of smoke stack exhaust and automobile exhaust in air pollution and founded a company called Oxy-Catalyst. Houdry first developed catalytic converters for smoke stacks called "cats" for short, and later developed catalytic converters for warehouse forklifts that used low grade, unleaded gasoline.<ref>"[https://books.google.com/books?id=49gDAAAAMBAJ&pg=PA134&dq=Popular+Mechanics+Science&source=bl&ots=wPfY03bHQE&sig=cm-xWdo-VtOnlEK9x6gfUnNseoc&hl=en&sa=X&ei=4cADUIjMAeKS2QXnp82wCw&ved=0CDsQ6wEwAjgK#v=onepage&q&f=true Exhaust Gas Made Safe]" ''[[Popular Mechanics]]'', September 1951, p. 134, bottom of page</ref> In the mid-1950s, he began research to develop catalytic converters for [[Petrol engine|gasoline engines]] used on cars. He was awarded United States Patent [[:File:US2742437 Houdry Auto Catalyst.pdf|2,742,437]] for his work.<ref>"[https://books.google.com/books?id=biYDAAAAMBAJ&pg=PA83&dq=popular+science+1930&hl=en&sa=X&ei=I5ICT8KZKsvlgge97s22Ag&ved=0CEsQ6AEwBjhu#v=onepage&q&f=true His Smoke Eating Cats Now Attack Traffic Smog]". ''[[Popular Science]]'', June 1955, pp. 83-85/244.</ref>


Widespread adoption of catalytic converters did not occur until more stringent emission control regulations forced the removal of the [[anti-knock agent]] [[tetraethyl lead]] from most types of gasoline. Lead is a "catalyst poison" and would effectively disable a catalytic converter by forming a coating on the catalyst's surface.<ref name="HoudryCHF">{{cite web|title=Eugene Houdry|url=https://www.chemheritage.org/historical-profile/eugene-houdry|website=Chemical Heritage Foundation|accessdate=27 October 2016}}</ref>
==Αντιδράσεις==
*Όταν εκτίθεται σε [[οξυγόνο]], το μονοξείδιο του αζώτου μετατρέπεται σε [[διοξείδιο του αζώτου]].
:: 2 ·NO + O<sub>2</sub> → 2 NO<sub>2</sub>


Catalytic converters were further developed by a series of engineers including [[John J. Mooney]], [[Carl D. Keith]], Antonio Eleazar at the [[Engelhard Corporation]],<ref>{{Registration required|date=January 2011}} [https://www.nytimes.com/2008/11/15/us/15keith.html "Carl D. Keith, a Father of the Catalytic Converter, Dies at 88"]. ''[[The New York Times]]''. 15 November 2008.</ref> creating the first production catalytic converter in 1973.<ref>{{Unreliable source?|date=January 2011|reason=appears to be user-generated database. how vetted?}} [[Staff writer]] (undated). "[http://www.referenceforbusiness.com/history/En-Ge/Engelhard-Corporation.html Engelhard Corporation]". referenceforbusiness.com. Retrieved 7 January 2011.</ref>
:Αυτή η μετατροπή θεωρείται ότι συμβαίνει μέσω του ενδιάμεσου ONOONO. Στο νερό, το μονοξείδιο του αζώτου αντιδρά με οξυγόνο και νερό για να σχηματίσει [[νιτρώδες οξύ]] HNO<sub>2</sub>. Η αντίδραση θεωρείται ότι προχωρά μέσω της ακόλουθης [[στοιχειομετρία]]ς:
:: 4 ·NO + O<sub>2</sub> + 2 H<sub>2</sub>O → 4 HNO<sub>2</sub>


[[William C. Pfefferle]] developed a catalytic combustor for [[gas turbine]]s in the early 1970s, allowing combustion without significant formation of nitrogen oxides and carbon monoxide.<ref name=Carter>Robert N. Carter, Lance L. Smith, Hasan Karim, Marco Castaldi, Shah Etemad, George Muench, R. Samuel Boorse, Paul Menacherry and William C. Pfefferle (1998). "[http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8078814 Catalytic Combustion Technology Development for Gas Turbine Engine Applications]". ''MRS Proceedings'', 549, 93 doi:10.1557/PROC-549-93</ref><ref name=BioMed>Worthy, Sharon. "[http://news.bio-medicine.org/biology-news-2/Connecticut-chemist-receives-award-for-cleaner-air-technology-4451-1 Connecticut chemist receives award for cleaner air technology]". ''Bio-Medicine''. 23 June 2003. Retrieved 11 December 2012.</ref>
*Το μονοξείδιο του αζώτου αντιδρά με [[φθόριο]], [[χλώριο]] και [[βρώμιο]] για να σχηματίσει είδη XNO , γνωστά ως αλογονούχα νιτροσύλια (nitrosyl halides), όπως το χλωριούχο νιτροσύλιο (nitrosyl chloride). Μπορεί να σχηματιστεί και ιωδιούχο νιτροσύλιο, αλλά είναι πολύ βραχύβιο και τείνει να μετασχηματιστεί σε I<sub>2</sub>.
:: 2 ·NO + Cl<sub>2</sub> → 2 NOCl
*[[Νιτροξύλιο]] (HNO) είναι η αναγμένη μορφή του μονοξειδίου του αζώτου.
*Διμερές μονοξειδίου του αζώτου N<sub>2</sub>O<sub>2 </sub>σχηματίζεται όταν ψύχεται το μονοξείδιο του αζώτου.
*Το μονοξείδιο του αζώτου αντιδρά με [[προπανόνη]] και αλκοξείδιο (alkoxide) σε νιτρωδοϋδροξυλαμίνη (diazeniumdiolate ή nitrosohydroxylamine) και [[αιθανικός μεθυλεστέρας|αιθανικό μεθυλεστέρα]]:<ref>{{cite journal|doi=10.1002/jlac.18983000108|title=Ueber Synthesen stickstoffhaltiger Verbindungen mit Hülfe des Stickoxyds|year=1898|last1=Traube|first1=Wilhelm|journal=Justus Liebig's Annalen der Chemie|volume=300|pages=81–128}}</ref>


== Construction ==
:[[File:TraubeReaction.svg|400px|Αντίδραση Τράουμπε]]
[[File:Aufgeschnittener Metall Katalysator für ein Auto.jpg|thumb|Cutaway of a metal-core converter]]
[[File:Pot catalytique vue de la structure.jpg|thumb|Ceramic-core converter]]


The catalytic converter's construction is as follows:
:Αυτή η αντίδραση ανακαλύφθηκε το 1898 και παραμένει σημαντική στην αναζήτηση προφαρμάκου για το μονοξείδιο του αζώτου. Το μονοξείδιο του αζώτου μπορεί επίσης να αντιδράσει άμεσα με το μεθοξείδιο του νατρίου (sodium methoxide), σχηματίζοντας μυρμηγκικό νάτριο (sodium formate) και [[υποξείδιο του αζώτου]].<ref>{{cite journal|doi=10.1021/jo7020423|title=Nitric Oxide Reacts with Methoxide|year=2008|last1=Derosa|first1=Frank|last2=Keefer|first2=Larry K.|last3=Hrabie|first3=Joseph A.|journal=The Journal of Organic Chemistry|volume=73|pages=1139–42|pmid=18184006|issue=3}}</ref>


# The [[catalyst support]] or [[Substrate (materials science)|substrate]]. For automotive catalytic converters, the core is usually a [[ceramic]] [[Monolith (catalyst support)|monolith]] with a honeycomb structure. Metallic foil monoliths made of [[Kanthal (alloy)|Kanthal]] (FeCrAl)<ref name="Verbrennungsmotoren Band 2">{{cite book|last1=Pischinger|first1=Univ.-Prof. Dr.-Ing. Stephan|title=Verbrennungsmotoren Band 2|date=2011|publisher=Lehrstuhl Für Verbrennungskraftmachinen|location=Aachen, Germany|page=335|edition=24}}</ref> are used in applications where particularly high heat resistance is required.<ref name="Verbrennungsmotoren Band 2"/> Either material is designed to provide a large surface area. The [[cordierite]] ceramic substrate used in most catalytic converters was invented by [[Rodney Bagley]], [[Irwin Lachman]] and [[Ronald Lewis (scientist)|Ronald Lewis]] at [[Corning Glass]], for which they were inducted into the [[National Inventors Hall of Fame]] in 2002.<ref name=Palucka/>
===Παρασκευή===
# The washcoat. A washcoat is a carrier for the catalytic materials and is used to disperse the materials over a large surface area. [[Aluminum oxide]], [[titanium dioxide]], [[silicon dioxide]], or a mixture of [[silica]] and [[alumina]] can be used. The catalytic materials are suspended in the washcoat prior to applying to the core. Washcoat materials are selected to form a rough, irregular surface, which greatly increases the surface area compared to the smooth surface of the bare substrate. This in turn maximizes the catalytically active surface available to react with the engine exhaust. The coat must retain its surface area and prevent [[sintering]] of the catalytic metal particles even at high temperatures (1000&nbsp;°C).<ref>Martin Votsmeier, Thomas Kreuzer, Jürgen Gieshoff, Gerhard Lepperhoff. ''Automobile Exhaust Control,'' in ''Ullmann's Encyclopedia of Industrial Chemistry'', Wiley-VCH 2002. DOI: 10.1002/14356007.a03_189.pub2</ref>
Στις εμπορικές ρυθμίσεις, το μονοξείδιο του αζώτου παράγεται από την [[οξειδοαναγωγή|οξείδωση]] της [[αμμωνία]]ς στους 750–900&nbsp;°C (κανονικά στους 850&nbsp;°C) με [[λευκόχρυσος|λευκόχρυσο]] ως [[κατάλυση|καταλύτης]]:
# [[Ceria]] or [[ceria-zirconia]]. These oxides are mainly added as oxygen storage promoters.<ref name="KašparFornasiero1999">{{cite journal|last1=Kašpar|first1=J.|last2=Fornasiero|first2=P.|last3=Graziani|first3=M.|title=Use of CeO2-based oxides in the three-way catalysis|journal=Catalysis Today|volume=50|issue=2|year=1999|pages=285–298|issn=0920-5861|doi=10.1016/S0920-5861(98)00510-0}}</ref>
# The catalyst itself is most often a mix of [[precious metal]]s. [[Platinum]] is the most active catalyst and is widely used, but is not suitable for all applications because of unwanted additional reactions and high cost. [[Palladium]] and [[rhodium]] are two other precious metals used. Rhodium is used as a [[Redox|reduction]] catalyst, palladium is used as an [[Redox|oxidation]] catalyst, and platinum is used both for reduction and oxidation. [[Cerium]], [[iron]], [[manganese]] and [[nickel]] are also used, although each has limitations. Nickel is not legal for use in the European Union because of its reaction with carbon monoxide into toxic [[nickel tetracarbonyl]].{{citation needed|date=October 2013}} [[Copper]] can be used everywhere except [[Japan]].{{Clarify|cummins uses copper|date=October 2015}}


Upon failure, a catalytic converter can be recycled into [[scrap]]. The [[precious metal]]s inside the converter, including [[platinum]], [[palladium]] and [[rhodium]], are extracted.
:4 NH<sub>3</sub> + 5 O<sub>2</sub> → 4 ·NO + 6 H<sub>2</sub>O


== Placement Of Catalytic Converters ==
Η μη καταλυτική [[ενδόθερμη διεργασία|ενδόθερμη]] αντίδραση του [[οξυγόνο|οξυγόνου]] (O<sub>2</sub>) και του [[άζωτο|αζώτου]] (N<sub>2</sub>), που εκτελείται σε υψηλές θερμοκρασίες (>2000&nbsp;°C) με εκκένωση δεν έχει αναπτυχθεί σε πρακτική εμπορική σύνθεση:


Catalytic converters require temperature of 800 degrees Fahrenheit (426 C) to efficiently convert harmful exhaust gases into inert ones, such as carbon dioxide and water vapor. So, first catalytic converters were placed close to the engine to ensure fast heating. However, such placing caused several problems, such as [[vapor lock]].
:N<sub>2</sub> + O<sub>2</sub> → 2 ·NO


As an alternative, catalytic converters were moved to a third of the way back from the engine, and were then placed underneath the vehicle.
Στο εργαστήριο, το μονοξείδιο του αζώτου δημιουργείται εύκολα με αναγωγή αραιού [[νιτρικό οξύ|νιτρικού οξέος]] με [[χαλκός|χαλκό]]:


In the 1990s, integrated catalytic converters<ref>{{cite web|title=Placement Of Catalytic Converters|url=http://www.carid.com/articles/why-do-some-replacement-exhaust-manifolds-come-with-catalytic-converters.html}}</ref> were developed, which, as the name suggests, were integrated into exhaust manifold assemblies. Their high efficiency, safety and space-saving capability quickly earned them a popularity. Today, almost every new vehicle sold in the United States is equipped with integrated catalytic converters.
:8 HNO<sub>3</sub> + 3 Cu → 3 Cu(NO<sub>3</sub>)<sub>2</sub> + 4 H<sub>2</sub>O + 2 ·NO


== Types ==
ή με αναγωγή του νιτρώδους οξέος με τη μορφή του [[νιτρώδες νάτριο|νιτρώδους νατρίου]] ή νιτρώδους καλίου (potassium nitrite):
: 2 NaNO<sub>2</sub> + 2 NaI + 2 H<sub>2</sub>SO<sub>4</sub> → I<sub>2</sub> + 4 NaHSO<sub>4</sub> + 2 ·NO
: 2 NaNO<sub>2</sub> + 2 FeSO<sub>4</sub> + 3 H<sub>2</sub>SO<sub>4</sub> → Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> + 2 NaHSO<sub>4</sub> + 2 H<sub>2</sub>O + 2 ·NO
: 3 KNO<sub>2(l)</sub> + KNO<sub>3(l)</sub> + Cr<sub>2</sub>O<sub>3(s)</sub> → 2 K<sub>2</sub>CrO<sub>4(s)</sub> + 4 NO<sub>(g)</sub>


=== Two-way ===
Η οδός του θειικού σιδήρου(II) είναι απλή και έχει χρησιμοποιηθεί στα εργαστηριακά πειράματα προπτυχιακών φοιτητών.
A 2-way (or "oxidation", sometimes called an "oxi-cat") catalytic converter has two simultaneous tasks:


# [[Oxidation]] of [[carbon monoxide]] to [[carbon dioxide]]: 2CO + O<sub>2</sub> → 2CO<sub>2</sub>
===Χημεία συμπλόκων ενώσεων (ενώσεων συναρμογής)===
# Oxidation of [[Unburned hydrocarbon|hydrocarbons]] (unburned and partially burned fuel) to carbon dioxide and [[water]]: C<sub>x</sub>H<sub>2x+2</sub> + [(3x+1)/2] O<sub>2</sub> → xCO<sub>2</sub> + (x+1) H<sub>2</sub>O (a combustion reaction)
Το μονοξείδιο του αζώτου αντιδρά με όλα τα [[στοιχεία μετάπτωσης|μέταλλα μετάπτωσης]] για να δώσει σύμπλοκα που ονομάζονται μεταλλικά νιτροσύλια (metal nitrosyls). Η πιο συνηθισμένη κατάσταση δεσμού του μονοξειδίου του αζώτου είναι του τελικού γραμμικού τύπου (terminal linear type) (M−NO). Η γωνία της ομάδας M−N−O ποικίλει από 160° έως 180°, αλλά ορίζεται και πάλι "γραμμική". Σε αυτήν την περίπτωση, η ομάδα του μονοξειδίου του αζώτου θεωρείται ως δότης 3 ηλεκτρονίων στην ομοιοπολική (ουδέτερη) μέθοδο μέτρησης των ηλεκτρονίων, ή ως δότης 2 ηλεκτρονίων στην ιοντική μέθοδο.<ref>{{Cite book|first=Robert H.| last=Crabtree |url=https://books.google.com/books?id=0bXMwefSs-kC&pg=PA32 |title=The Organometallic Chemistry of the Transition Metals|publisher= John Wiley and Sons|year= 2005|page=32|isbn=9780471718758}}</ref> Κάποιος μπορεί να θεωρήσει τέτοια σύμπλοκα ως παραγόμενα από NO<sup>+</sup>, που είναι ισοηλεκτρονικό με το [[μονοξείδιο του άνθρακα]] (CO).
This type of catalytic converter is widely used on [[diesel engine]]s to reduce hydrocarbon and carbon monoxide emissions. They were also used on gasoline engines in American- and Canadian-market automobiles until 1981. Because of their inability to control [[NOx|oxides of nitrogen]], they were superseded by three-way converters.


=== Three-way ===
Στην περίπτωση της κεκαμμένης διαμόρφωσης M−N−O, η ομάδα ·NO μπορεί να θεωρηθεί ως δότης ενός ηλεκτρονίου χρησιμοποιώντας την ομοιοπολική μέτρηση, ή ως δότης 2 ηλεκτρονίων χρησιμοποιώντας την ιοντική μέτρηση.<ref>{{Cite book|first=Robert H.| last=Crabtree |url=https://books.google.com/books?id=0bXMwefSs-kC&pg=PA32 |title=The Organometallic Chemistry of the Transition Metals|publisher= John Wiley and Sons|year= 2005|pages=96–98|isbn=9780471718758}}</ref>
Three-way catalytic converters (TWC) have the additional advantage of controlling the emission of [[nitric oxide]] and [[nitrogen dioxide]] (both together abbreviated with [[NOx|NO<sub>x</sub>]] and not to be confused with [[nitrous oxide]]), which are precursors to [[acid rain]] and [[smog]].


Since 1981, "three-way" (oxidation-reduction) catalytic converters have been used in vehicle emission control systems in the United States and Canada; many other countries have also adopted stringent [[Vehicle emissions control|vehicle emission regulations]] that in effect require three-way converters on gasoline-powered vehicles. The reduction and oxidation catalysts are typically contained in a common housing; however, in some instances, they may be housed separately. A three-way catalytic converter has three simultaneous tasks:
Το μονοξείδιο του αζώτου μπορεί να χρησιμεύσει ως ψευδοαλογονίδιο ενός ηλεκτρονίου. Σε τέτοια σύμπλοκα, η ομάδα M−N−O χαρακτηρίζεται από μια γωνία μεταξύ 120° και 140°.


# [[Redox|Reduction]] of nitrogen oxides to [[nitrogen]] and [[oxygen]]: 2NO<sub>x</sub> → xO<sub>2</sub> + N<sub>2</sub>
Η ομάδα ·NO μπορεί επίσης να γεφυρώσει τα κέντρα των μετάλλων μέσω του ατόμου του αζώτου σε διάφορες γεωμετρίες.
# [[Redox|Oxidation]] of carbon monoxide to carbon dioxide: 2CO + O<sub>2</sub> → 2CO<sub>2</sub>
# Oxidation of unburnt hydrocarbons (HC) to carbon dioxide and [[water]]: C<sub>x</sub>H<sub>2x+2</sub> + [(3x+1)/2]O<sub>2</sub> → xCO<sub>2</sub> + (x+1)H<sub>2</sub>O.


These three reactions occur most efficiently when the catalytic converter receives exhaust from an engine running slightly above the [[stoichiometric]] point. For gasoline combustion, this ratio is between 14.6 and 14.8 parts air to one part fuel, by weight. The ratio for [[Autogas]] (or [[liquefied petroleum gas]] LPG), [[natural gas]] and [[ethanol]] fuels is slightly different for each, requiring modified fuel system settings when using those fuels. In general, engines fitted with 3-way catalytic converters are equipped with a [[Engine control unit|computerized]] [[closed-loop controller|closed-loop feedback]] [[fuel injection]] system using one or more [[Oxygen sensor#Automotive applications|oxygen sensors]]{{Citation needed|reason=Statistical statements, both explicit and implicit alike, need to be sourced|date=September 2016}}, though early in the deployment of three-way converters, [[carburetor]]s equipped with feedback mixture control were used.
===Μέτρηση της συγκέντρωσης===
[[File:The production and diffusion of nitric oxide (NO) (white) in the cytoplasm (green) of clusters of conifer cells one hour after mechanical agitation.jpg|thumb|250px|Μονοξείδιο του αζώτου (λευκό) σε κύτταρα [[κωνοφόρα|κωνοφόρων]], οπτικοποιημένα χρησιμοποιώντας DAF-2 DA (διοξική διαμινοφλουροσκεΐνη diaminofluorescein diacetate)]]


Three-way converters are effective when the engine is operated within a narrow band of air-fuel ratios near the stoichiometric point, such that the exhaust gas composition oscillates between rich (excess fuel) and lean (excess oxygen). Conversion efficiency falls very rapidly when the engine is operated outside of this band. Under lean engine operation, the exhaust contains excess oxygen, and the reduction of NO<sub>x</sub> is not favored. Under rich conditions, the excess fuel consumes all of the available oxygen prior to the catalyst, leaving only oxygen stored in the catalyst available for the oxidation function.
Η συγκέντρωση του μονοξειδίου του αζώτου μπορεί να προσδιοριστεί χρησιμοποιώντας μια απλή αντίδραση χημειοφωταύγειας (chemiluminescent reaction) που περιλαμβάνει [[όζον]].<ref>{{cite journal |title=Homogeneous chemiluminescent measurement of nitric oxide with ozone. Implications for continuous selective monitoring of gaseous air pollutants|year=1970 |last1=Fontijn |first1=Arthur. |last2=Sabadell |first2=Alberto J. |last3=Ronco |first3=Richard J. |journal=Analytical Chemistry |volume=42 |issue=6 |pages=575–579 |doi=10.1021/ac60288a034}}</ref> Ένα δείγμα που περιέχει μονοξείδιο του αζώτου αναμειγνύεται με μεγάλη ποσότητα όζοντος. Το μονοξείδιο του αζώτου αντιδρά με το όζον για να παράξει [[οξυγόνο]] και [[διοξείδιο του αζώτου]], συνοδευόμενο με εκπομπή [[φως|φωτός]] (χημειοφωταύγεια):
: ·NO + O<sub>3</sub> → NO<sub>2</sub> + O<sub>2</sub> + ''hν''
που μπορεί να μετρηθεί με φωτοανιχνευτή (photodetector). Η ποσότητα του παραγόμενου φωτός είναι ανάλογη προς την ποσότητα του μονοξειδίου του αζώτου στο δείγμα.


Closed-loop engine control systems are necessary for effective operation of three-way catalytic converters because of the continuous balancing required for effective NO<sub>x</sub> reduction and HC oxidation. The control system must prevent the NO<sub>x</sub> reduction catalyst from becoming fully oxidized, yet replenish the oxygen storage material so that its function as an oxidation catalyst is maintained.
Άλλες μέθοδοι ελέγχου περιλαμβάνουν ηλεκτρολυτική ανάλυση (electroanalysis) (αμπερομετρική προσέγγιση), όπου το ·NO αντιδρά με ηλεκτρόδιο για να επάγει ρεύμα ή μεταβολή τάσης. Η ανίχνευση των ριζών NO σε βιολογικούς ιστούς είναι ιδιαίτερα δύσκολη λόγω του σύντομου χρόνου ζωής και της χαμηλής συγκέντρωσης αυτών των ριζών στους ιστούς. Μία από τις λίγες πρακτικές μεθόδους είναι η παγίδευση ιδιοστροφορμής (σπιν) του μονοξειδίου του αζώτου με σύμπλοκα σιδήρου-διθειοκαρβαμιδικού και την ακόλουθη ανίχνευση του μονονιτροζυλοσιδήρου (mono-nitrosyl-iron) συμπλόκου με ηλεκτρονικό παραμαγνητικό συντονισμό (electron paramagnetic resonance ή EPR).<ref>{{cite journal |last1=Vanin |first1=A |last2=Huisman |first2=A |last3=Van Faassen |first3=E |year=2002 |title=Iron dithiocarbamate as spin trap for nitric oxide detection: Pitfalls and successes |journal=Methods in enzymology |volume=359 |pages=27–42 |pmid=12481557 |doi=10.1016/S0076-6879(02)59169-2 |series=Methods in Enzymology |isbn=9780121822620}}</ref><ref>{{cite journal |last1=Nagano |first1=T |last2=Yoshimura |first2=T |year=2002 |title=Bioimaging of nitric oxide |journal=Chemical Reviews |volume=102 |issue=4 |pages=1235–70 |doi=10.1021/cr010152s |pmid=11942795}}</ref>


Three-way catalytic converters can store oxygen from the exhaust gas stream, usually when the [[air–fuel ratio]] goes lean.<ref>{{Cite journal|last1 = Brandt|first1 = Erich|last2 = Wang|first2 = Yanying|last3 = Grizzle|first3 = Jessy|title = Dynamic Modeling of a Three Way Catalyst for SI Engine Exhaust Emission Control|journal = IEEE Transactions on Control Systems Technology|volume = 8|issue = 5|pages = 767–776|year = 2000|url = http://web.eecs.umich.edu/~grizzle/papers/TWC98.pdf|doi = 10.1109/87.865850}}</ref> When sufficient oxygen is not available from the exhaust stream, the stored oxygen is released and consumed ''(see [[cerium(IV) oxide]])''. A lack of sufficient oxygen occurs either when oxygen derived from NO<sub>x</sub> reduction is unavailable or when certain maneuvers such as hard acceleration enrich the mixture beyond the ability of the converter to supply oxygen.
Υπάρχει μια ομάδα των δεικτών φθοριζουσών χρωστικών (fluorescent dyes) που είναι επίσης διαθέσιμη σε ακετυλιωμένη μορφή για ενδοκυτταρικές μετρήσεις. Η πιο συνηθισμένη ένωση είναι η 4,5-διαμινοφλουροσκεΐνη (DAF-2).<ref name="undefined">{{cite journal
| vauthors=Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T
| year = 1998
| title = Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins
| journal = Anal. Chem.
| volume = 70
| issue = 13
| pages = 2446–2453| pmid = 9666719
| doi = 10.1021/ac9801723
}}</ref>


==== Unwanted reactions ====
== Παραγωγή ==
Unwanted reactions can occur in the three-way catalyst, such as the formation of odoriferous [[hydrogen sulfide]] and [[ammonia]]. Formation of each can be limited by modifications to the washcoat and precious metals used. It is difficult to eliminate these byproducts entirely. Sulfur-free or low-sulfur fuels eliminate or reduce hydrogen sulfide.
Από θερμοδυναμική άποψη, το ·NO είναι ασταθές ως προς O<sub>2</sub> και N<sub>2</sub>, αν και αυτή η μετατροπή είναι πολύ αργή σε θερμοκρασίες περιβάλλοντος απουσία [[κατάλυση|καταλύτη]]. Επειδή η θερμότητα σχηματισμού του ·NO είναι [[ενδόθερμη διεργασία]], η σύνθεσή του από μοριακό άζωτο και οξυγόνο απαιτεί αυξημένες θερμοκρασίες πάνω από 1000&nbsp;°C.


For example, when control of hydrogen-sulfide emissions is desired, [[nickel]] or [[manganese]] is added to the washcoat. Both substances act to block the [[absorption (chemistry)|absorption]] of [[sulfur]] by the washcoat. Hydrogen sulfide is formed when the washcoat has absorbed sulfur during a low-temperature part of the operating cycle, which is then released during the high-temperature part of the cycle and the sulfur combines with HC.
Μια μεγάλη φυσική πηγή είναι οι [[αστραπή|αστραπές]]. Η χρήση [[Μηχανή εσωτερικής καύσης|μηχανών εσωτερικής καύσης]] έχει αυξήσει δραματικά την παρουσία του μονοξειδίου του αζώτου στο περιβάλλον. Ένας σκοπός των καταλυτικών μετατροπέων (catalytic converters) στα οχήματα είναι η ελαχιστοποίηση της εκπομπής του ·NO με καταλυτική επαναφορά σε O<sub>2</sub> και N<sub>2</sub>.


=== Diesel engines {{Anchor|Diesel Oxidation Catalyst|DOC}}===
== Περιβαλλοντικές επιπτώσεις ==
For compression-ignition (i.e., [[diesel engine]]s), the most commonly used catalytic converter is the '''diesel oxidation catalyst''' ('''DOC'''). DOCs contain [[palladium]], [[platinum]] and [[aluminium oxide]], all of which serve as [[catalyst]]s to [[Redox|oxidize]] the hydrocarbons and carbon monoxide with oxygen to form carbon dioxide and water.


2CO + O<sub>2</sub> → 2CO<sub>2</sub>
=== Όξινη απόθεση ===
Το μονοξείδιο του αζώτου αντιδρά με την υδροϋπεροξυ ρίζα (HO<sub>2</sub><sup>•</sup>) για να σχηματίσει διοξείδιο του αζώτου (NO<sub>2</sub>), που στη συνέχεια μπορεί να αντιδράσει με τη ρίζα του υδροξυλίου (<sup>•</sup>[[υδροξύλιο|OH]]) για να παραχθεί [[νιτρικό οξύ]] (HNO<sub>3</sub>):
: ·NO + HO<sub>2</sub><sup>•</sup>→ <sup>•</sup>NO<sub>2</sub> + <sup>•</sup>OH
: ·NO<sub>2</sub> + <sup>•</sup>OH → HNO<sub>3</sub>
Το νιτρικό οξύ, μαζί με το [[θειικό οξύ]], συνεισφέρουν στην εναπόθεση [[όξινη βροχή|όξινης βροχής]].


C<sub>''x''</sub>H<sub>2''x''+2</sub> + [(3''x''+1)/2] O<sub>2</sub> → ''x'' CO<sub>2</sub> + (''x''+1) H<sub>2</sub>O
=== Μείωση του όζοντος ===
Επιπρόσθετα, το ·NO συμμετέχει στην [[τρύπα του όζοντος]]. Σε αυτήν τη διεργασία, το μονοξείδιο του αζώτου αντιδρά με το στρατοσφαιρικό [[όζον]] για να σχηματίσει O<sub>2</sub> και διοξείδιο του αζώτου:
: ·NO + O<sub>3</sub> → NO<sub>2</sub> + O<sub>2</sub>
πως φαίνεται και στην ενότητα μέτρησης της συγκέντρωσης, αυτή η αντίδραση χρησιμοποιείται επίσης για να μετρήσει τις συγκεντρώσεις του ·NO σε όγκους ελέγχου.


These converters often operate at 90 percent efficiency, virtually eliminating diesel odor and helping reduce visible [[particulate]]s ([[soot]]). These catalysts are not active for NO<sub>x</sub> reduction because any reductant present would react first with the high concentration of O<sub>2</sub> in diesel exhaust gas.
=== Πρόδρομη ένωση για το NO<sub>2</sub> ===
Όπως φαίνεται στην ενότητα όξινης εναπόθεσης, το μονοξείδιο του αζώτου μπορεί να μετασχηματιστεί σε διοξείδιο του αζώτου (αυτό μπορεί να συμβεί με την υδροϋπερόξυ ρίζα, HO<sub>2</sub><sup>•</sup>, ή το διατομικό οξυγόνο, O<sub>2</sub>). Συμπτώματα της βραχυχρόνιας έκθεσης σε διοξείδιο του αζώτου περιλαμβάνουν ναυτία, [[δύσπνοια]] και κεφαλαλγία. Οι μακροχρόνιες επιπτώσεις μπορεί να περιλαμβάνουν εξασθενημένη ανοσοποιητική και [[αναπνευστικό σύστημα|αναπνευστική]] λειτουργία.<ref>{{Cite web|url = http://www.cdc.gov/niosh/ipcsneng/neng0930.html|title = Centers for Disease Control and Prevention|date=1 July 2014 |accessdate = 10 December 2015|website =NIOSH |publisher = }}</ref>


Reduction in NO<sub>x</sub> emissions from compression-ignition engines has previously been addressed by the addition of exhaust gas to incoming air charge, known as [[Exhaust gas recirculation|exhaust gas recirculation (EGR)]]. In 2010, most light-duty diesel manufacturers in the U.S. added catalytic systems to their vehicles to meet new federal emissions requirements. There are two techniques that have been developed for the catalytic reduction of NO<sub>x</sub> emissions under lean exhaust conditions: [[selective catalytic reduction]] (SCR) and the lean NO<sub>x</sub> trap or [[NOx adsorber]]. Instead of precious metal-containing NOx absorbers, most manufacturers selected base-metal SCR systems that use a [[reagent]] such as [[ammonia]] to reduce the NO<sub>x</sub> into nitrogen. Ammonia is supplied to the catalyst system by the injection of [[urea]] into the exhaust, which then undergoes thermal decomposition and hydrolysis into ammonia. One trademark product of urea solution, also referred to as Diesel Exhaust Fluid (DEF), is [[AdBlue]].
==Τεχνικές εφαρμογές==
Αν και το ·NO έχει λίγες σχετικά άμεσες χρήσεις , παράγεται σε μαζική κλίμακα ως ενδιάμεσο προϊόν στη διεργασία Όστβαλντ για τη σύνθεση του [[νιτρικό οξύ|νιτρικού οξέος]] από [[αμμωνία]]. Το 2005, παράχθηκαν 6 εκατομμύρια μετρικοί τόνοι νιτρικού οξέος μόνο στις ΗΠΑ.<ref>{{Cite journal|title=Production: Growth is the Norm|journal= Chemical and Engineering News|date= July 10, 2006|volume=84 |issue=28|pages= 59–68|doi=10.1021/cen-v084n028.p059}}</ref> Βρίσκει χρήση στη βιομηχανία [[ημιαγωγός|ημιαγωγών]] σε διάφορες διεργασίες. Σε νια από τις εφαρμογές, χρησιμοποιείται μαζί με το [[υποξείδιο του αζώτου]] για να σχηματίσει πύλες οξυνιτριδίου στις συσκευές συμπληρωματικού ημιαγωγού μετάλλου-οξειδίου (CMOS).


[[Diesel exhaust]] contains relatively high levels of particulate matter (soot), consisting largely of elemental [[carbon]]. Catalytic converters cannot clean up elemental carbon, though they do remove up to 90 percent of the soluble organic fraction,{{Citation needed|date=December 2008}} so particulates are cleaned up by a soot trap or [[diesel particulate filter]] (DPF). Historically, a DPF consists of a [[cordierite]] or [[silicon carbide]] substrate with a geometry that forces the exhaust flow through the substrate walls, leaving behind trapped soot particles. Contemporary DPFs can be manufactured from a variety of rare metals that provide superior performance (at a greater expense).<ref>http://www.synergycatalyst.com/catalyst-coating-technology/</ref> As the amount of soot trapped on the DPF increases, so does the back pressure in the exhaust system. Periodic regenerations (high temperature excursions) are required to initiate combustion of the trapped soot and thereby reducing the exhaust back pressure. The amount of soot loaded on the DPF prior to regeneration may also be limited to prevent extreme exotherms from damaging the trap during regeneration. In the U.S., all on-road light, medium and heavy-duty vehicles powered by diesel and built after January 1, 2007, must meet diesel particulate emission limits, meaning that they effectively have to be equipped with a 2-way catalytic converter and a diesel particulate filter. Note that this applies only to the diesel engine used in the vehicle. As long as the engine was manufactured before January 1, 2007, the vehicle is not required to have the DPF system. This led to an inventory runup by engine manufacturers in late 2006 so they could continue selling pre-DPF vehicles well into 2007.<ref>{{cite web|url= http://www.epa.gov/otaq/highway-diesel/regs/f00057.pdf |title="Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements" }}&nbsp;{{small|(123&nbsp;KB)}}</ref> During the re-generation cycle, most systems require the engine to consume more fuel in a relatively short amount of time in order to generate the high temperatures necessary for the cycle to complete. This adversely affects the overall fuel economy of vehicles equipped with DPF systems, especially in vehicles that are driven mostly in city conditions where frequent acceleration requires a larger amount of fuel to be burned and therefore more soot to collect in the exhaust system.
===Διάφορες εφαρμογές===
Το μονοξείδιο του αζώτου μπορεί να χρησιμοποιηθεί για την ανίχνευση επιφανειακών ριζών σε πολυμερή. Βαφή της επιφάνειας των [[χημική ρίζα|ριζών]] με μονοξείδιο του αζώτου καταλήγει στην ενσωμάτωση του αζώτου, που μπορεί να ποσοτικοποιηθεί μέσω της φασματοσκοπίας φωτοηλεκτρονίων ακτίνων Χ (X-ray photoelectron spectroscopy).


=== Lean-burn spark-ignition engines ===
==Βιολογικές λειτουργίες==
For [[lean-burn]] [[spark-ignition]] engines, an oxidation catalyst is used in the same manner as in a diesel engine. Emissions from lean burn spark ignition engines are very similar to emissions from a diesel compression ignition engine.
Το ·NO είναι ένα από τα λίγα αέρια που επισημαίνουν γνωστά μόρια και είναι επιπλέον εξαιρετικό επειδή είναι αέριο με ρίζα. Είναι βασικός αγγελιοφόρος των [[σπονδυλωτό|σπονδυλωτών]], παίζοντας ρόλο σε μια ποικιλία βιολογικών διεργασιών.<ref>Weller, Richard, [http://www.ted.com/talks/richard_weller_could_the_sun_be_good_for_your_heart.html Could the sun be good for your heart?] TedxGlasgow. Filmed March 2012, posted January 2013</ref> Είναι ένα γνωστό βιοπροϊόν σε όλους σχεδόν τους τύπους οργανισμών, από τα βακτήρια μέχρι τα φυτά, τους μύκητες και τα ζωικά κύτταρα.<ref>Roszer, T (2012) The Biology of Subcellular Nitric Oxide. ISBN 978-94-007-2818-9</ref>


== Installation ==
Το μονοξείδιο του αζώτου γνωστό ως ενδοθηλιακός χαλαρωτικός παράγοντας (endothelium-derived relaxing factor ή EDRF), βιοσυντίθεται ενδογενώς από [[αργινίνη|<small>L</small>-αργινίνη]], [[οξυγόνο]] και NADPH από διάφορα [[ένζυμο|ένζυμα]] συνθάσεων του μονοξειδίου του αζώτου (NOS). Η αναγωγή ανόργανων νιτρικών μπορεί επίσης να χρησιμεύσει στην παραγωγή μονοξειδίου του αζώτου. Το ενδοθήλιο (endothelium) που είναι εσωτερική επίστρωση (inner lining) των [[Αγγείο (ανατομία)|αιμοφόρων αγγείων]] χρησιμοποιεί το μονοξείδιο του αζώτου για να σηματοδοτεί τον περιβάλλοντα λείο μυ (smooth muscle) για να χαλαρώσει, με αποτέλεσμα την αγγειοδιαστολή (vasodilation) και την αύξηση της ροής του αίματος. Το μονοξείδιο του αζώτου είναι πολύ δραστικό (έχοντας χρόνο ζωής μερικών δευτερολέπτων), διαχέεται ακόμα ελεύθερα μέσω των μεμβρανών. Αυτά τα χαρακτηριστικά καθιστούν το μονοξείδιο του αζώτου ιδανικό ως παροδικό παρακρινές (paracrine) (μεταξύ γειτονικών κελιών) και αυτοκρινές (autocrine) (μέσα σε ένα μοναδικό κύτταρο) σηματοδοτικό μόριο.<ref name="stryer">{{cite book|last = Stryer| first = Lubert| title = Biochemistry, 4th Edition| publisher = W.H. Freeman and Company|year = 1995| page = 732| isbn = 0-7167-2009-4}}</ref>
Many vehicles have a close-coupled catalytic converter located near the engine's [[exhaust manifold]]. The converter heats up quickly, due to its exposure to the very hot exhaust gases, enabling it to reduce undesirable emissions during the engine warm-up period. This is achieved by burning off the excess hydrocarbons which result from the extra-rich mixture required for a cold start.


When catalytic converters were first introduced, most vehicles used [[carburetor]]s that provided a relatively rich [[air–fuel ratio|air-fuel ratio]]. Oxygen (O<sub>2</sub>) levels in the exhaust stream were therefore generally insufficient for the catalytic reaction to occur efficiently. Most designs of the time therefore included [[secondary air injection]], which injected air into the exhaust stream. This increased the available oxygen, allowing the catalyst to function as intended.
Ανεξάρτητα από τη συνθάση του μονοξειδίου του αζώτου, μια εναλλακτική οδός, δημιουργεί την οδό νιτρικών-νιτρωδών-μονοξειδίου του αζώτου, ανυψώνει το μονοξείδιο του αζώτου μέσω της διαδοχικής αναγωγής των διαιτολογικών νιτρικών που παράγονται από τροφές με βάση φυτά.<ref>{{cite web|url=http://www.berkeleytest.com/plant-based.html |title=Plant-based Diets &#124; Plant-based Foods &#124; Beetroot Juice &#124; Nitric Oxide Vegetables |publisher=Berkeley Test |accessdate=2013-10-04}}</ref> Τα πλούσια σε νιτρικά λαχανικά, ιδιαίτερα τα φυλλώδη πράσινα, όπως το [[σπανάκι]], η [[ρόκα (φυτό)|ρόκα]] και το παντζάρι, έχουν δείξει αύξηση των καρδιοπροστατευτικών επιπέδων του μονοξειδίου του αζώτου με αντίστοιχη μείωση της πίεσης του αίματος σε [[Αρτηριακή υπέρταση|προϋπερτασικά]] άτομα.<ref>{{cite journal|doi=10.1161/HYPERTENSIONAHA.111.00933|title=Enhanced Vasodilator Activity of Nitrite in Hypertension: Critical Role for Erythrocytic Xanthine Oxidoreductase and Translational Potential|year=2013|last1=Ghosh|first1=S. M.|last2=Kapil|first2=V.|last3=Fuentes-Calvo|first3=I.|last4=Bubb|first4=K. J.|last5=Pearl|first5=V.|last6=Milsom|first6=A. B.|last7=Khambata|first7=R.|last8=Maleki-Toyserkani|first8=S.|last9=Yousuf|first9=M.|last10=Benjamin|first10=N.|last11=Webb|first11=A. J.|last12=Caulfield|first12=M. J.|last13=Hobbs|first13=A. J.|last14=Ahluwalia|first14=A.|journal=Hypertension|volume=61|issue=5|pages=1091–102|pmid=23589565}}</ref><ref>{{cite journal|doi=10.1161/HYPERTENSIONAHA.107.103523|title=Acute Blood Pressure Lowering, Vasoprotective, and Antiplatelet Properties of Dietary Nitrate via Bioconversion to Nitrite|year=2008|last1=Webb|first1=A. J.|last2=Patel|first2=N.|last3=Loukogeorgakis|first3=S.|last4=Okorie|first4=M.|last5=Aboud|first5=Z.|last6=Misra|first6=S.|last7=Rashid|first7=R.|last8=Miall|first8=P.|last9=Deanfield|first9=J.|last10=Benjamin|first10=N.|last11=MacAllister|first11=R.|last12=Hobbs|first12=A. J.|last13=Ahluwalia|first13=A.|journal=Hypertension|volume=51|issue=3|pages=784–90|pmid=18250365|pmc=2839282}}</ref> Για να δημιουργήσει το σώμα μονοξείδιο του αζώτου μέσω της οδού νιτρικών-νιτρωδών-μονοξειδίου του αζώτου, η αναγωγή των νιτρικών σε νιτρώδη (από την νιτρική ρεδουκτάση, ένα βακτηριακό ένζυμο) συμβαίνει στο στόμα, από συμβιωτικά βακτήρια, ένα υποχρεωτικό και αναγκαίο βήμα.<ref>{{cite journal|doi=10.1111/odi.12157|title=The oral microbiome and nitric oxide homoeostasis|year=2013|last1=Hezel|first1=MP|last2=Weitzberg|first2=E|journal=Oral Diseases|pages=7–16|volume=21}}</ref> Η παρακολούθηση της κατάστασης του μονοξειδίου του αζώτου από ελέγχους του σάλιου ανιχνεύει τη βιομετατροπή των νιτρικών που παράγονται από φυτά σε μονοξείδιο του αζώτου. Αύξηση στα επίπεδα του σιελογόνου είναι ενδεικτική δίαιτας πλούσιας σε φυλλώδη λαχανικά που είναι συνήθως άφθονα σε αντιϋπερτασικές δίαιτες όπως η δίαιτα DASH.<ref>{{cite web|last=Green |first=Shawn J. |url=http://www.realworldhealthcare.org/2013/07/turning-dash-strategy-into-reality-for-improved-cardio-wellness-outcomes-part-ii/ |title=Turning DASH Strategy into Reality for Improved Cardio Wellness Outcomes: Part II |publisher=Real World Health Care |date=2013-07-25 |accessdate=2013-10-04}}</ref>


Some three-way catalytic converter systems have air injection systems with the air injected between the first (NO<sub>x</sub> reduction) and second (HC and CO oxidation) stages of the converter. As in two-way converters, this injected air provides oxygen for the oxidation reactions. An upstream air injection point, ahead of the catalytic converter, is also sometimes present to provide additional oxygen only during the engine warm up period. This causes unburned fuel to ignite in the exhaust tract, thereby preventing it reaching the catalytic converter at all. This technique reduces the engine runtime needed for the catalytic converter to reach its "light-off" or [[operating temperature]].
Η παραγωγή μονοξειδίου του αζώτου είναι αυξημένη σε πληθυσμούς που ζουν σε μεγάλα υψόμετρα, που βοηθά αυτά τα άτομα να αποφύγουν την [[υποξία]] βοηθώντας στην αγγειοδιαστολή της πνευμονικής αγγείωσης. Τα αποτελέσματα περιλαμβάνουν αγγειοδιαστολή, [[νευροδιαβιβαστής|νευροδιαβίβαση]], τροποποίηση του κύκλου των τριχών (hair cycle),<ref>{{cite journal|url=http://www.drproctor.com/Archd.htm |title=Endothelium-Derived Relaxing Factor and Minoxidil: Active Mechanisms in Hair Growth
| pmid=2757417
| journal= Archives of Dermatology|volume= 125|date=August 1989|last1=Proctor|first1=PH|issue=8|pages=1146|doi=10.1001/archderm.1989.01670200122026 }}</ref> της παραγωγής των δραστικών ενδιάμεσων του αζώτου και των πεϊκών στύσεων (μέσω της ικανότητας τους για αγγειοδιαστολή. Η φαρμακευτική [[νιτρογλυκερίνη]] και το νιτρώδες αμύλιο χρησιμεύουν ως αγγειοδιασταλτικά επειδή μετατρέπονται σε μονοξείδιο του αζώτου στο σώμα. Το αγγειοδιασταλτικό αντιυπερτασικό φάρμακο minoxidil περιέχει ένα τμήμα ·NO και μπορεί να δράσει ως αγωνιστής NO. Παρομοίως, το Sildenafil citrate, γνωστό και με το εμπορικό όνομα ''Viagra'', διεγείρει στύσεις κυρίως με βελτίωση σηματοδότησης μέσω της οδού του μονοξειδίου του αζώτου στο πέος.


Most newer vehicles have [[Fuel injection#Supersession of carburetors|electronic fuel injection]] systems, and do not require air injection systems in their exhausts. Instead, they provide a precisely controlled air-fuel mixture that quickly and continually cycles between lean and rich combustion. [[Oxygen sensor]]s are used to monitor the exhaust oxygen content before and after the catalytic converter, and this information is used by the [[Electronic Control Unit]] to adjust the fuel injection so as to prevent the first (NO<sub>x</sub> reduction) catalyst from becoming oxygen-loaded, while simultaneously ensuring the second (HC and CO oxidation) catalyst is sufficiently oxygen-saturated.
Το μονοξείδιο του αζώτου (NO) συνεισφέρει στην ομοιόσταση των αγγείων παρεμποδίζοντας την αγγειακή συστολή και αύξηση του λείου μυός, τη συσσώρευση των αιμοπεταλίων και την προσκόλληση των λευκοκυττάρων στο ενδοθήλιο. Άνθρωποι με αθηροσκλήρωση, [[Διαβήτης (ασθένεια)|διαβήτη]], ή [[Αρτηριακή υπέρταση|υπέρταση]] εμφανίζουν συχνά διαταραγμένες οδούς NO.<ref>{{cite journal
| last = Dessy
| first = C.
| last2 = Ferron
| first2 = O.
| title = Pathophysiological Roles of Nitric Oxide: In the Heart and the Coronary Vasculature|doi=10.2174/1568014043355348
| journal = Current Medical Chemistry – Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry
| volume = 3
| issue = 3
| pages = 207–216
| year = 2004}}</ref> Υψηλή λήψη αλατιού έδειξε ότι εξασθενίζει την παραγωγή NO σε ασθενείς με στοιχειώδη υπέρταση, αν και η βιοδιαθεσιμότητα παραμένει αρρύθμιστη.<ref>{{cite journal|pmid=12207094|year=2002|last1=Osanai|first1=T|last2=Fujiwara|first2=N|last3=Saitoh|first3=M|last4=Sasaki|first4=S|last5=Tomita|first5=H|last6=Nakamura|first6=M|last7=Osawa|first7=H|last8=Yamabe|first8=H|last9=Okumura|first9=K|title=Relationship between salt intake, nitric oxide, and asymmetric dimethylarginine and its relevance to patients with end-stage renal disease|volume=20|issue=5|pages=466–8|journal=Blood purification|doi=10.1159/000063555}}</ref>


== Damage ==
Το μονοξείδιο του αζώτου παράγεται επίσης από φαγοκύτταρα ([[μονοπύρηνα]], μακροφάγα (macrophages) και [[Ουδετερόφιλα - πολυμορφοπύρηνα|ουδετερόφιλα]]) ως τμήμα του ανθρώπινου [[Ανοσοποιητικό σύστημα|ανοσοποιητικού συστήματος]].<ref>{{Cite journal|pmid=2126524|year=1990|last1=Green|first1=SJ|last2=Mellouk|first2=S|last3=Hoffman|first3=SL|last4=Meltzer|first4=MS|last5=Nacy|first5=CA|title=Cellular mechanisms of nonspecific immunity to intracellular infection: Cytokine-induced synthesis of toxic nitrogen oxides from L-arginine by macrophages and hepatocytes|volume=25|issue=1–3|pages=15–9|journal=Immunology letters|doi=10.1016/0165-2478(90)90083-3}}</ref> Τα φαγοκύτταρα είναι εφοδιασμένα με επαγώγιμη συνθάση του μονοξειδίου του αζώτου (iNOS), που ενεργοποιείται από [[ιντερφερόνη]]-γάμμα (IFN-γ) ως μοναδικό σήμα ή από παράγοντα νέκρωσης όγκων (tumor necrosis factor ή TNF) μαζί με ένα δεύτερο σήμα.<ref>Gorczyniski and Stanely, Clinical Immunology. Landes Bioscience; Austin, TX. ISBN 1-57059-625-5</ref><ref>{{Cite journal|pmid=8423095|year=1993|last1=Green|first1=SJ|last2=Nacy|first2=CA|last3=Schreiber|first3=RD|last4=Granger|first4=DL|last5=Crawford|first5=RM|last6=Meltzer|first6=MS|last7=Fortier|first7=AH|title=Neutralization of gamma interferon and tumor necrosis factor alpha blocks in vivo synthesis of nitrogen oxides from L-arginine and protection against Francisella tularensis infection in Mycobacterium bovis BCG-treated mice|volume=61|issue=2|pages=689–98|pmc=302781|journal=Infection and immunity}}</ref><ref>{{Cite journal|pmid=8832969|year=1995|last1=Kamijo|first1=R|last2=Gerecitano|first2=J|last3=Shapiro|first3=D|last4=Green|first4=SJ|last5=Aguet|first5=M|last6=Le|first6=J|last7=Vilcek|first7=J|title=Generation of nitric oxide and clearance of interferon-gamma after BCG infection are impaired in mice that lack the interferon-gamma receptor|volume=46|issue=1|pages=23–31|journal=Journal of inflammation}}</ref> Αφ' ετέρου, ο αυξητικός παράγοντας μετασχηματισμού-βήτα (transforming growth factor-beta ή TGF-β) παρέχει ένα ισχυρό ανασταλτικό σήμα στο iNOS, ενώ η ιντερλευκίνη-4 (interleukin-4 ή IL-4) και η IL-10 δίνουν ασθενή ανασταλτικά σήματα. Έτσι, το ανοσοποιητικό σύστημα μπορεί να ρυθμίσει το οπλοστάσιο των φαγοκυττάρων που παίζει ρόλο στις φλεγμονικές και ανοσολογικές αποκρίσεις.<ref>{{Cite journal|pmid=7537721|year=1994|last1=Green|first1=SJ|last2=Scheller|first2=LF|last3=Marletta|first3=MA|last4=Seguin|first4=MC|last5=Klotz|first5=FW|last6=Slayter|first6=M|last7=Nelson|first7=BJ|last8=Nacy|first8=CA|title=Nitric oxide: Cytokine-regulation of nitric oxide in host resistance to intracellular pathogens|volume=43|issue=1–2|pages=87–94|journal=Immunology letters|doi=10.1016/0165-2478(94)00158-8}}</ref> Το μονοξείδιο του αζώτου εκκρίνεται ως ελεύθερες ρίζες σε ανοσολογική απόκριση και είναι τοξικό στα βακτήρια και τα ενδοκυτταρικά παράσιτα, συμπεριλαμβανομένης της ''λεϊσμάνια (Leishmania)''<ref>{{Cite journal|pmid=2124240|year=1990|last1=Green|first1=SJ|last2=Crawford|first2=RM|last3=Hockmeyer|first3=JT|last4=Meltzer|first4=MS|last5=Nacy|first5=CA|title=Leishmania major amastigotes initiate the L-arginine-dependent killing mechanism in IFN-gamma-stimulated macrophages by induction of tumor necrosis factor-alpha|volume=145|issue=12|pages=4290–7|journal=Journal of immunology }}</ref> και της [[ελονοσία]]ς·<ref>{{cite journal|doi=10.1084/jem.180.1.353|title=Induction of nitric oxide synthase protects against malaria in mice exposed to irradiated Plasmodium berghei infected mosquitoes: Involvement of interferon gamma and CD8+ T cells|year=1994|last1=Seguin|first1=M. C.|journal=Journal of Experimental Medicine|volume=180|pages=353–8|pmid=7516412|last2=Klotz|first2=FW|last3=Schneider|first3=I|last4=Weir|first4=JP|last5=Goodbary|first5=M|last6=Slayter|first6=M|last7=Raney|first7=JJ|last8=Aniagolu|first8=JU|last9=Green|first9=SJ|issue=1|pmc=2191552}}</ref><ref>{{Cite journal|pmid=1903415|year=1991|last1=Mellouk|first1=S|last2=Green|first2=SJ|last3=Nacy|first3=CA|last4=Hoffman|first4=SL|title=IFN-gamma inhibits development of Plasmodium berghei exoerythrocytic stages in hepatocytes by an L-arginine-dependent effector mechanism|volume=146|issue=11|pages=3971–6|journal=Journal of immunology }}</ref><ref>{{Cite journal|pmid=7534796|year=1995|last1=Klotz|first1=FW|last2=Scheller|first2=LF|last3=Seguin|first3=MC|last4=Kumar|first4=N|last5=Marletta|first5=MA|last6=Green|first6=SJ|last7=Azad|first7=AF|title=Co-localization of inducible-nitric oxide synthase and Plasmodium berghei in hepatocytes from rats immunized with irradiated sporozoites|volume=154|issue=7|pages=3391–5|journal=Journal of immunology}}</ref> ο μηχανισμός για αυτό συμπεριλαμβάνει βλάβη του DNA<ref>
[[Catalyst poisoning]] occurs when the catalytic converter is exposed to exhaust containing substances that coat the working surfaces, so that they cannot contact and react with the exhaust. The most notable contaminant is [[tetraethyllead|lead]], so vehicles equipped with catalytic converters can run only on [[unleaded gasoline|unleaded]] fuel. Other common catalyst poisons include [[sulfur]], [[manganese]] (originating primarily from the gasoline additive [[Methylcyclopentadienyl manganese tricarbonyl|MMT]]) and [[silicon]], which can enter the exhaust stream if the engine has a leak that allows [[Antifreeze|coolant]] into the combustion chamber. [[Phosphorus]] is another catalyst contaminant. Although phosphorus is no longer used in gasoline, it (and [[zinc]], another low-level catalyst contaminant) was until recently widely used in engine oil [[AW additive|antiwear additives]] such as [[zinc dithiophosphate]] (ZDDP). Beginning in 2004, a limit of phosphorus concentration in engine oils was adopted in the [[American Petroleum Institute|API]] SM and [[Motor oil#ILSAC|ILSAC]] GF-4 specifications.
{{cite journal|doi=10.1126/science.1948068|title=DNA deaminating ability and genotoxicity of nitric oxide and its progenitors|year=1991|last1=Wink|first1=D.|last2=Kasprzak|first2=K.|last3=Maragos|first3=C.|last4=Elespuru|first4=R.|last5=Misra|first5=M|last6=Dunams|first6=T.|last7=Cebula|first7=T.|last8=Koch|first8=W.|last9=Andrews|first9=A.|last10=Allen|first10=J.|last11=Et|first11=al.|journal=Science|volume=254|issue=5034|pages=1001–3|pmid=1948068
}}</ref><ref>
{{cite journal|doi=10.1073/pnas.89.7.3030|title=DNA Damage and Mutation in Human Cells Exposed to Nitric Oxide in vitro|year=1992|last1=Nguyen|first1=T.|journal=Proceedings of the National Academy of Sciences|volume=89|issue=7|pages=3030–3034|last2=Brunson|first2=D.|last3=Crespi|first3=C. L.|last4=Penman|first4=B. W.|last5=Wishnok|first5=J. S.|last6=Tannenbaum|first6=S. R.|pmid=1557408|pmc=48797}} Free text.</ref><ref>{{cite journal|doi=10.1021/tx050283e|title=Threshold Effects of Nitric Oxide-Induced Toxicity and Cellular Responses in Wild-Type and p53-Null Human Lymphoblastoid Cells|year=2006|last1=Li|first1=Chun-Qi|last2=Pang|first2=Bo|last3=Kiziltepe|first3=Tanyel|last4=Trudel|first4=Laura J.|last5=Engelward|first5=Bevin P.|last6=Dedon|first6=Peter C.|last7=Wogan|first7=Gerald N.|journal=Chemical Research in Toxicology|volume=19|issue=3|pages=399–406|pmid=16544944|pmc=2570754}} free text</ref> και αποδόμηση των κέντρων σιδήρου θείου σε ιόντα σιδήρου και ενώσεις νιτροσυλο-σιδήρου (iron-nitrosyl).<ref>{{cite journal|doi=10.1016/S0006-291X(88)80015-9|title=Nitric oxide: A cytotoxic activated macrophage effector molecule|year=1988|last1=Hibbs|first1=John B.|last2=Taintor|first2=Read R.|last3=Vavrin|first3=Zdenek|last4=Rachlin|first4=Elliot M.|journal=Biochemical and Biophysical Research Communications|volume=157|pages=87–94|pmid=3196352|issue=1}}</ref>


Depending on the contaminant, catalyst poisoning can sometimes be reversed by running the engine under a very heavy load for an extended period of time. The increased exhaust temperature can sometimes vaporise or sublimate the contaminant, removing it from the catalytic surface. However, removal of lead deposits in this manner is usually not possible because of lead's high boiling point.
Η επαγώγιμη οδός (iNOS) της σύνθεσης του μονοξειδίου του αζώτου στα φαγοκύτταρα μπορεί να δημιουργήσει μεγάλες ποσότητες ασύζευκτων ηλεκτρονίων [[άζωτο|·N]][[οξυγόνο|O]] που προκαλούν [[απόπτωση]] και συνεπώς τον θάνατο των κυττάρων. Σε εργαστηριακές μελέτες φαίνεται ότι η δημιουργία φαγοκυττάρων που εξαρτώνται από το ασύζευκτο ηλεκτρόνιο [[άζωτο|·N]][[οξυγόνο|O]] σε συγκεντρώσεις μεγαλύτερες από 400-500 NM προκαλεί απόπτωση στα γειτονικά κύτταρα και αυτό το αποτέλεσμα μπορεί να δράσει με παρόμοιο τρόπο με εξειδικευμένους μεσολαβητές (Specialized pro-resolving mediators) ώστε να μειώσει και να αντιστρέψει τις φλεγμονώδεις αποκρίσεις εξουδετερώνοντας και στη συνέχεια επιταχύνοντας τον καθαρισμό των προφλεγμονωδών κυττάρων από φλεγμονώδεις ιστούς.<ref name="pmid26095908">{{cite journal | vauthors = Wallace JL, Ianaro A, Flannigan KL, Cirino G | title = Gaseous mediators in resolution of inflammation | journal = Seminars in Immunology | volume = 27 | issue = 3 | pages = 227–33 | year = 2015 | pmid = 26095908 | doi = 10.1016/j.smim.2015.05.004 | url = }}</ref> Όμως, ο ρόλος του ασύζευκτου ηλεκτρονίου [[άζωτο|·N]][[οξυγόνο|O]] στη φλεγμονή είναι περίπλοκος με μελέτες προτύπων που περιλαμβάνουν ιογενή λοίμωξη που προτείνει ότι αυτός ο αερώδης μεσολαβητής μπορεί επίσης να προάγει τη φλεγμονή.<ref name="pmid26208702">{{cite journal | vauthors = Uehara EU, Shida Bde S, de Brito CA | title = Role of nitric oxide in immune responses against viruses: beyond microbicidal activity | journal = Inflammation Research : Official Journal of the European Histamine Research Society ... [Et Al.] | volume = 64 | issue = 11 | pages = 845–52 | year = 2015 | pmid = 26208702 | doi = 10.1007/s00011-015-0857-2 | url = }}</ref>


Any condition that causes abnormally high levels of unburned hydrocarbons—raw or partially burnt fuel—to reach the converter will tend to significantly elevate its temperature, bringing the risk of a meltdown of the substrate and resultant catalytic deactivation and severe exhaust restriction. Usually the ignition system e.g. coil packs and/or primary ignition components (e.g. distributor cap, wires, ignition coil and spark plugs) and/or damaged fuel system components (fuel injectors, fuel pressure regulator, and associated sensors) could damage a catalytic converter - this also includes using a thicker oil viscosity not recommended by the manufacturer (especially with [[ZDDP]] content), oil and/or coolant leaks. Vehicles equipped with [[OBD-II]] diagnostic systems are designed to alert the driver to a misfire condition by means of illuminating the "check engine" light on the dashboard, or flashing it if the current misfire conditions are severe enough to potentially damage the catalytic converter.
Σε απάντηση, πολλά παθογόνα βακτήρια έχουν εξελίξει μηχανισμούς για αντίσταση στο μονοξείδιο του αζώτου.<ref>{{cite book |author=Janeway, C. A. |title=Immunobiology: the immune system in health and disease |publisher=Garland Science |location=New York |year=2005 |edition=6th |isbn=0-8153-4101-6 |displayauthors=etal }}</ref> Επειδή το μονοξείδιο του αζώτου μπορεί να χρησιμεύσει ως ''μετρητής φλεγμονών (inflammometer)'' σε συνθήκες όπως το [[άσθμα]], υπάρχει αυξανόμενο ενδιαφέρον για τη χρήση του εκπνεόμενου μονοξειδίου του αζώτου ως αναπνευστικής δοκιμασίας σε ασθένειες με φλεγμονή της αναπνευστικής οδού. Μειωμένα επίπεδα εκπνεόμενου NO έχουν συσχετιστεί με έκθεση σε ρύπανση του αέρα σε ποδηλάτες και καπνιστές, αλλά γενικά, αυξημένα επίπεδα εκπνεόμενου NO συσχετίζονται με έκθεση σε ρύπανση του αέρα.<ref name="Jacobs">{{cite journal|doi=10.1186/1476-069X-9-64|title=Subclinical responses in healthy cyclists briefly exposed to traffic-related air pollution: An intervention study|year=2010|last1=Jacobs|first1=Lotte|last2=Nawrot|first2=Tim S|last3=De Geus|first3=Bas|last4=Meeusen|first4=Romain|last5=Degraeuwe|first5=Bart|last6=Bernard|first6=Alfred|last7=Sughis|first7=Muhammad|last8=Nemery|first8=Benoit|last9=Panis|first9=Luc|journal=Environmental Health|volume=9|pages=64|pmid=20973949|pmc=2984475}}</ref>


== Regulations ==
Το μονοξείδιο του αζώτου μπορεί να συμβάλει σε βλάβη από επαναιμάτωση (reperfusion injury)] όταν παράγεται υπερβολική ποσότητα κατά τη διάρκεια επαναιμάτωσης (μετά από περίοδο ισχαιμίας (ischemia)) αντιδρά με υπεροξείδιο για να παράξει το επιβλαβές οξειδωτικό υπεροξυνιτρώδες (peroxynitrite). Αντίθετα, το εισπνεόμενο μονοξείδιο του αζώτου βοηθά στην επιβίωση και ανάκτηση από δηλητηρίαση με παρακουάτ (paraquat), που παράγει επιβλαβές υπεροξείδιο για τους ιστούς του πνεύμονα και παρεμποδίζει τον μεταβολισμό του NOS.
{{Refimprove section|date=January 2017}}


Emissions regulations vary considerably from jurisdiction to jurisdiction. Most automobile spark-ignition engines in North America have been fitted with catalytic converters since 1975,<ref name=Palucka/><ref name=Petersen/><ref name=GM_advert/><ref name=Sentinel_1974/> and the technology used in non-automotive applications is generally based on automotive technology.
Στα φυτά, το μονοξείδιο του αζώτου μπορεί να παραχθεί από οποιαδήποτε από τις τέσσερις παρακάτω οδούς: (i) L-αριγινίνη που εξαρτάται από τη συνθάση του μονοξειδίου του αζώτου,<ref>{{cite journal|title=Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants|author=Corpas, F. J. |journal=Plant Physiology|volume=136 |issue=1 |pages=2722–33 |year=2004|doi=10.1104/pp.104.042812|pmid=15347796|pmc=523336|first2=JB|last3=Carreras |first3=A|last4=Quirós |first4=M|last5=León |first5=AM|last6=Romero-Puertas |first6=MC|last7=Esteban |first7=FJ|last8=Valderrama |first8=R|last9=Palma |first9=JM|last10=Sandalio |first10=LM|last11=Gómez |first11=M|last12=Del Río |first12=LA|last2=Barroso }}</ref><ref>{{cite journal |author=Corpas, F. J. |title=Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development|journal=Planta|volume=224|issue=2 |pages=246–54|year=2006|doi=10.1007/s00425-005-0205-9 |pmid=16397797 |first2=Juan B. |last3=Carreras|first3=Alfonso |last4=Valderrama|first4=Raquel |last5=Palma|first5=José M. |last6=León|first6=Ana M. |last7=Sandalio|first7=Luisa M. |last8=Del Río|first8=Luis A|last2=Barroso}}</ref><ref>{{cite journal |author=Valderrama, R.|title=Nitrosative stress in plants|journal=FEBS Lett|volume=581|issue=3 |pages=453–61|year=2007|doi=10.1016/j.febslet.2007.01.006 |pmid=17240373 |first2=Francisco J. |last3=Carreras|first3=Alfonso |last4=Fernández-Ocaña|first4=Ana |last5=Chaki|first5=Mounira |last6=Luque|first6=Francisco |last7=Gómez-Rodríguez|first7=María V. |last8=Colmenero-Varea|first8=Pilar |last9=Del Río|first9=Luis A. |last10=Barroso|first10=Juan B.|last2=Corpas}}</ref> (although the existence of animal NOS homologs in plants is debated),<ref>{{cite journal |author=Corpas, F. J.|title=Enzymatic sources of nitric oxide in plant cells – beyond one protein–one function|journal=New Phytologist|volume=162|issue= 2|pages=246–7|year=2004|doi=10.1111/j.1469-8137.2004.01058.x |last2=Barroso |first2=Juan B. |last3=Del Rio |first3=Luis A.}}</ref> (ii) δεσμευμένη μεμβράνη πλάσματος νιτρικής ρεδουκτάσης (nitrate reductase), (iii) μιτοχονδριακή αλυσίδα μεταφοράς ηλεκτρονίων, ή (iv) μη ενζυματικές αντιδράσεις. Είναι ένα σηματοδοτικό μόριο, δρα κυρίως κατά του [[οξειδωτικό στρες|οξειδωτικού άγχους]] και παίζει επίσης ρόλο στις παθογενείς αλληλεπιδράσεις των φυτών. Η επεξεργασία κομμένων ανθών και άλλων φυτών με μονοξείδιο του αζώτου έχει δείξει επιμήκυνση του χρόνου πριν το μαράζωμα.<ref>{{Cite journal | last1 = Siegel-Itzkovich | first1 = J. | title = Viagra makes flowers stand up straight | doi = 10.1136/bmj.319.7205.274a | journal = BMJ | volume = 319 | issue = 7205 | pages = 274 | year = 1999 | pmid = 10426722| pmc =1126920 }}</ref>


Regulations for diesel engines are similarly varied, with some jurisdictions focusing on NO<sub>x</sub> (nitric oxide and nitrogen dioxide) emissions and others focusing on particulate (soot) emissions. This regulatory diversity is challenging for manufacturers of engines, as it may not be economical to design an engine to meet two sets of regulations.
Δύο σημαντικοί βιολογικοί μηχανισμοί αντίδρασης του μονοξειδίου του αζώτου είναι η S-νιτροποίηση των θειολών, και η νιτροσυλίωση των ιόντων των μετάλλων μετάπτωσης. Η S-νιτροποίηση περιλαμβάνει την (αντίστροφη) μετατροπή των ομάδων [[θειόλες|θειολών]] περιλαμβανομένων των υπολειμμάτων [[κυστεΐνη]]ς σε πρωτεΐνες, για να σχηματίσει S-νιτροδοθειόλες (RSNOs). Η S-νιτροποίηση είναι ένας μηχανισμός για δυναμική, μεταμεταγραφική ρύθμιση των περισσότερων ή όλων των μεγάλων κατηγοριών πρωτεϊνών.<ref>van Faassen, E. and Vanin, A. (eds.) (2007) ''Radicals for life: The various forms of nitric oxide''. Elsevier, Amsterdam, ISBN 978-0-444-52236-8</ref> Ο δεύτερος μηχανισμός, η νιτροσυλίωση, περιλαμβάνει τη involves the σύνδεση του ·NO με ιόν μετάλλου μετάπτωσης όπως ο σίδηρος ή ο χαλκός. Σε αυτήν τη λειτουργία, το ·NO αναφέρεται ως ο νιτρόσυλο προσδέτης. Οι τυπικές περιπτώσεις περιλαμβάνουν τη νιτροσυλίωση πρωτεϊνών αίμης όπως κυτοχρώματα, απενεργοποιώντας έτσι την κανονική ενζυματική δραστικότητα του ενζύμου. Το νιτροσυλιωμένο ιόν σιδήρου είναι ιδιαίτερα σταθερό, επειδή η σύνδεση του νιτρόσυλο προσδέτη στο δισθενή σίδηρο (Fe(II)) είναι πολύ ισχυρή. Η αιμογλοβίνη είναι ένα σημαντικό παράδειγμα πρωτεΐνης της αίμης που μπορεί να τροποποιηθεί από ·NO και με τις δύο οδούς: το ·NO μπορεί να προσδεθεί άμεσα στην αίμη στην αντίδραση νιτροσυλίωσης και σχηματίζουν ανεξάρτητα S-νιτροδοθειόλες με S-νιτροποίηση των ημίσεων των θειολών.<ref>van Faassen, E. and Vanin, A. (2004) "Nitric Oxide", in ''Encyclopedia of Analytical Science'', 2nd ed., Elsevier, ISBN 0127641009.</ref>


Regulations of fuel quality vary across jurisdictions. In North America, Europe, Japan and [[Hong Kong]], gasoline and diesel fuel are highly regulated, and [[compressed natural gas]] and LPG (Autogas) are being reviewed for regulation. In most of Asia and Africa, the regulations are often lax: in some places [[sulfur]] content of the fuel can reach 20,000 parts per million (2%). Any sulfur in the fuel can be oxidized to SO<sub>2</sub> ([[sulfur dioxide]]) or even SO<sub>3</sub> ([[sulfur trioxide]]) in the [[combustion chamber]]. If sulfur passes over a catalyst, it may be further oxidized in the catalyst, i.e., SO<sub>2</sub> may be further oxidized to SO<sub>3</sub>. Sulfur oxides are precursors to [[sulfuric acid]], a major component of [[acid rain]]. While it is possible to add substances such as [[vanadium]] to the catalyst washcoat to combat sulfur-oxide formation, such addition will reduce the effectiveness of the catalyst. The most effective solution is to further refine fuel at the refinery to produce [[ultra-low sulfur diesel]]. Regulations in Japan, Europe and North America tightly restrict the amount of sulfur permitted in motor fuels. However, the direct financial expense of producing such clean fuel may make it impractical for use in developing countries. As a result, cities in these countries with high levels of vehicular traffic suffer from acid rain{{citation needed|date=June 2015}}, which damages stone and woodwork of buildings, poisons humans and other animals, and damages local [[ecosystem]]s, at a very high financial cost.
===Μηχανισμός δράσης===
Υπάρχουν αρκετοί μηχανισμοί με τους οποίους το ·NO έχει δείξει ότι επηρεάζει τη βιολογία των ζωντανών κυττάρων. Αυτοί περιλαμβάνουν την οξείδωση των πρωτεϊνών που περιέχουν σίδηρο όπως η ριβονουκλεοτιδική αναγωγάση (ribonucleotide reductase) και η ακονιτάση (aconitase), η ενεργοποίηση της διαλυτής γουανιλικής κυκλάσης (guanylate cyclase), η ADP ριβοσυλίωση των πρωτεϊνών, η νιτροσυλίωση της οξυθειούχου ομάδας της πρωτεΐνης και η ενεργοποίηση του ρυθμιστικού παράγοντα του σιδήρου.<ref>{{cite journal|pmid=7658698|year=1995|last1=Shami|first1=PJ|last2=Moore|first2=JO|last3=Gockerman|first3=JP|last4=Hathorn|first4=JW|last5=Misukonis|first5=MA|last6=Weinberg|first6=JB|title=Nitric oxide modulation of the growth and differentiation of freshly isolated acute non-lymphocytic leukemia cells|volume=19|issue=8|pages=527–33|journal=Leukemia research|doi=10.1016/0145-2126(95)00013-E}}</ref> Το ·NO έχει δείξει ότι ενεργοποιεί το NF-κB σε περιφερειακά αιματικά μονοπυρηνικά κύτταρα, έναν σημαντικό παράγοντα μεταγραφής στη γονιδιακή έκφραση iNOS ως απάντηση σε φλεγμονή.<ref>{{cite journal|author1=Kaibori M. |author2=Sakitani K. |author3=Oda M. |author4=Kamiyama Y. |author5=Masu Y. |author6=Okumura T. |year=1999|title=Immunosuppressant FK506 inhibits inducible nitric oxide synthase gene expression at a step of NF-κB activation in rat hepatocytes|journal=J. Hepatol.|volume=30|pages=1138–1145|doi=10.1016/S0168-8278(99)80270-0|pmid=10406194|issue=6}}</ref>


== Negative aspects ==
Βρέθηκε ότι το ·NO δρα μέσω διέγερσης της διαλυτής γουανιλικής κυκλάσης, που είναι ετεροδιμερές ένζυμο με επακόλουθο σχηματισμό κυκλικού GMP. Το κυκλικό GMP ενεργοποιεί την πρωτεϊνική κινάση G, που προκαλεί επαναπρόσληψη του Ca<sup>2+</sup> και το άνοιγμα των ενεργοποιούμενων από το ασβέστιο διαύλων καλίου. Η πτώση στη συγκέντρωση του Ca<sup>2+</sup> εξασφαλίζει ότι η κινάση της ελαφριάς αλυσίδας της μυοσίνης (myosin light-chain kinase ή MLCK) δεν μπορεί πια να φωσφορυλιώσει το μόριο της μυοσίνης, σταματώντας έτσι τον κύκλο διασταυρούμενης γέφυρας (crossbridge cycle) και οδηγώντας σε χαλάρωση του κυττάρου του λείου μυός.<ref>{{cite book|pmid=174|year=2003|last1=Rhoades|first1=RA|last2=Tanner|first2=GA|title=Medical physiology 2nd edition}}</ref>
Catalytic converters restrict the free flow of exhaust, which negatively affects vehicle performance and fuel economy, especially in older cars.<ref name="gaisun">{{Cite news|title=Kits to Foil Auto Pollution Control Are Selling Well|author=Crutsinger, Martin|work=[[The Gainesville Sun]]|date=29 September 1982}}</ref> Because early cars' carburetors were incapable of precise fuel-air mixture control, the cars' catalytic converters could overheat and ignite flammable materials under the car.<ref>{{Cite news|publisher=''The Bulletin''{{Clarify|date=December 2010|reason=which one? there are several such named publications}}|date=14 June 1976|title=Catalytic Converter Still Controversial after Two Years of Use|author=Ullman, Owen}}</ref> A 2006 test on a 1999 Honda Civic showed that removing the stock catalytic converter netted a 3% increase in horsepower; a new metallic core converter only cost the car 1% horsepower, compared to no converter.<ref name="imptune">{{cite web |url=http://www.importtuner.com/features/0610impp_catalytic_converter_removal/viewall.html |title=Beat the Law |date=1 October 2006 |website=Import Tuner |access-date=9 January 2011 |archiveurl=https://web.archive.org/web/20140228203151/http://www.importtuner.com/features/0610impp_catalytic_converter_removal/viewall.html |archivedate=28 February 2014}}</ref> To some performance enthusiasts, this modest increase in power for very little cost encourages the removal or "gutting" of the catalytic converter.<ref name="gaisun"/><ref>{{Cite news|title=Some of Us Can Only Afford a Clunker|work=[[The Palm Beach Post]]|date=23 February 1996}}</ref> In such cases, the converter may be replaced by a welded-in section of ordinary pipe or a flanged "test pipe", ostensibly meant to check if the converter is clogged, by comparing how the engine runs with and without the converter. This facilitates temporary reinstallation of the converter in order to pass an emission test.<ref name="imptune"/> In many jurisdictions, it is illegal to remove or disable a catalytic converter for any reason other than its direct and immediate replacement. In the United States, for example, it is a violation of Section 203(a)(3)(A) of the 1990 Clean Air Act for a vehicle repair shop to remove a converter from a vehicle, or cause a converter to be removed from a vehicle, except in order to replace it with another converter,<ref name=51FR150>[http://www.epa.gov/compliance/resources/policies/civil/caa/mobile/amccpolicy.pdf Sale and Use of Aftermarket Catalytic Converters], US Environmental Protection Agency, US Federal Register Volume 51</ref> and Section 203(a)(3)(B) makes it illegal for any person to sell or to install any part that would bypass, defeat or render inoperative any emission control system, device or design element. Vehicles without functioning catalytic converters generally fail emission inspections. The [[Aftermarket (automotive)|automotive aftermarket]] supplies high-flow converters for vehicles with upgraded engines, or whose owners prefer an exhaust system with larger-than-stock capacity.<ref>{{Cite book|title=Mazda MX-5 Miata|author=Tanner, Keith|work=Motorbooks|page=120}}</ref>


=== Warm-up period ===
==Ιατρική χρήση==
Vehicles fitted with catalytic converters emit most of their total pollution during the first five minutes of engine operation; for example, before the catalytic converter has warmed up sufficiently to be fully effective.<ref name="National Synchotron Light Source">[https://web.archive.org/web/20120417183354/http://www.nsls.bnl.gov/about/everyday/catalytic.asp Catalytic converters], nsls.bnl.gov</ref>


In 1995, [[Alpina]] introduced an electrically heated catalyst. Called "E-KAT," it was used in Alpina's B12 5,7 E-KAT based on the BMW [[BMW E38|750i]].<ref name=":0">{{Cite web|url = http://www.alpina-automobiles.com/en/alpina-world/milestones/|title = Milestones|accessdate = 5 June 2015|website = alpina-automobiles.com}}</ref> [[Resistance heating|Heating coils]] inside the catalytic converter assemblies are electrified just after the engine is started, bringing the catalyst up to operating temperature very quickly to qualify the vehicle for [[low emission vehicle]] (LEV) designation.<ref name=":1">{{Cite web|last=Edgar|first=Julian|title=Goodbye 12 volts... hello 42 volts!|url=http://autospeed.com/cms/title_Goodbye-12-volts-hello-42-volts/A_0319/article.html|publisher=Autospeed|accessdate=2 January 2012|date=5 October 1999|quote=The current model BMW 750iL has a maximum electrical load of 428 amps (5.9&nbsp;kW)! In this car, over half of the maximum load is from the short-term electrical heating of the catalytic converters}}</ref> BMW later introduced the same heated catalyst, developed jointly by Emitec, Alpina and BMW,<ref name=":0" /> in its 750i in 1999.<ref name=":1"/>
=== Νεογνική χρήση ===
Μίγματα μονοξειδίου του αζώτου/οξυγόνου χρησιμοποιούνται σε αυξημένη φροντίδα για να προάγουν τριχοειδή και πνευμονική διαστολή ώστε να αντιμετωπίσουν πρωτογενή πνευμονική υπέρταση σε νεογνά<ref>{{cite journal |author=Finer NN, Barrington KJ |title=Nitric oxide for respiratory failure in infants born at or near term |journal=Cochrane Database Syst Rev |issue=4 |pages=CD000399 |year=2006 |pmid=17054129 |doi=10.1002/14651858.CD000399.pub2 |editor1-last=Finer |editor1-first=Neil|last2=Barrington }}</ref><ref>{{cite journal |vauthors=Chotigeat U, Khorana M, Kanjanapattanakul W |title=Inhaled nitric oxide in newborns with severe hypoxic respiratory failure |journal=J Med Assoc Thai |volume=90 |issue=2 |pages=266–71 |year=2007 |pmid=17375630 }}</ref> μεταμηκωνιακής εισπνοής (post-meconium aspiration) και σχετικά με τη γέννηση ελαττώματα. Αυτά είναι συνήθως αέρια μείγματα έσχατης λύσης πριν τη χρήση εξωσωματικής οξυγόνωσης με μεμβράνη (extracorporeal membrane oxygenation ή ECMO). Η θεραπεία με μονοξείδιο του αζώτου έχει τη δυναμική της σημαντικής αύξησης της ποιότητας της ζωής και σε κάποιες περιπτώσεις, σώζει ζωές βρεφών που κινδυνεύουν από πνευμονικές αγγειακές νόσους.<ref>{{cite journal|pmid=10690334|year=1999|last1=Hayward|first1=CS|last2=Kelly|first2=RP|last3=MacDonald|first3=PS|title=Inhaled nitric oxide in cardiology practice|volume=43|issue=3|pages=628–38|journal=Cardiovascular research|doi=10.1016/S0008-6363(99)00114-5}}</ref>


Some vehicles contain a pre-cat, a small catalytic converter upstream of the main catalytic converter which heats up faster on vehicle start up, reducing the emissions associated with cold starts. A pre-cat is most commonly used by an auto manufacturer when trying to attain the Ultra Low Emissions Vehicle (ULEV) rating, such as on the [[Toyota MR2]] Roadster.<ref>http://www.toyotaownersclub.com/forums/topic/70844-pre-cats-what-you-should-know/</ref>
=== Παιδιατρική και ενήλικη χρήση ===
Προς το παρόν στις ΗΠΑ, το μονοξείδιο του αζώτου δεν είναι εγκεκριμένο για κανέναν πληθυσμό πλην των [[βρέφος|βρεφών]]. Στη ρύθμιση ICU για ενήλικες, το εισπνεόμενο ·NO μπορεί να βελτιώσει την υποξαιμία σε οξεία πνευμονική βλάβη (acute lung injury), στο σύνδρομο της οξείας αναπνευστικής ανεπάρκειας (acute respiratory distress syndrome) και σε σοβαρή πνευμονική υπέρταση, αν και τα αποτελέσματα είναι βραχύβια και δεν υπάρχουν μελέτες που να δείχνουν βελτιωμένα κλινικά αποτελέσματα. Χρησιμοποιείται σε εξατομικευμένη βάση σε ICUs ως συμπλήρωμα σε άλλες οριστικές θεραπείες για αντιστρέψιμες αιτίες υποξαιμικής αναπνευστικής ανεπάρκειας.<ref>{{cite journal |author1=Mark J.D. Griffiths, M.R.C.P. |author2=Timothy W. Evans, M.D. |title= Inhaled Nitric Oxide Therapy in Adults |journal=N Engl J Med |volume=353 |pages=2683–2695 |date=December 22, 2005 |doi=10.1056/NEJMra051884 |issue=25 |pmid=16371634}}</ref>


=== Δοσολογία και ισχύς ===
=== Environmental impact ===
Catalytic converters have proven to be reliable and effective in reducing noxious tailpipe emissions. However, they also have some shortcomings in use, and also adverse environmental impacts in production:
Προς το παρόν στις ΗΠΑ, το μονοξείδιο του αζώτου είναι αέριο διαθέσιμο σε συγκεντρώσεις μόνο 100 ppm και 800 ppm. Υπερδοσολογία με εισπνεόμενο μονοξείδιο του αζώτου θα εμφανιστεί με αύξηση στη μεθαιμοσφαιρίνη (methemoglobin) και σε πνευμονική τοξικότητα που σχετίζεται με εισπνεόμενο ·NO. Αυξημένο NO μπορεί να προκαλέσει οξεία πνευμονική βλάβη (acute lung injury).


* An engine equipped with a three-way catalyst must run at the [[Fuel mixture|stoichiometric point]], which means more fuel is consumed than in a [[Lean burn|lean-burn]] engine. This means approximately 10% more CO<sub>2</sub></em> emissions from the vehicle.
=== Αντενδείξεις ===
* Catalytic converter production requires [[palladium]] or [[platinum]]; part of the world supply of these [[precious metal]]s is produced near [[Norilsk]], [[Russia]], where the industry (among others) has caused Norilsk to be added to ''[[Time (magazine)|Time]]'' magazine's list of most-polluted places.<ref>{{cite news |first=Bryan |last=Walsh |title=Norilsk, Russia | work = The World's Most Polluted Places |url=http://www.time.com/time/specials/2007/article/0,28804,1661031_1661028_1661022,00.html |publisher=[[Time (magazine)|Time]] |accessdate=7 January 2011|date=12 September 2007}}</ref>
Το εισπνεόμενο μονοξείδιο του αζώτου αντενδείκνυται για τη θεραπεία νεογνών που εξαρτώνται από δεξιά προς τα αριστερά παράκαμψη του αίματος. Αυτό συμβαίνει επειδή το μονοξείδιο του αζώτου μειώνει την αντίσταση της πνευμονικής κυκλοφορίας διαστέλλοντας τα πνευμονικά αιμοφόρα αγγεία. Η αυξημένη πνευμονική επιστροφή αυξάνει την πίεση στον αριστερό καρδιακό κόλπο, προκαλώντας κλείσιμο του ωοειδούς τρήματος και μείωση της αιματικής ροής μέσω του αρτηριακού πόρου. Το κλείσιμο αυτών των παρακάμψεων μπορεί να σκοτώσει τα νεογνά με καρδιακές ανωμαλίες που βασίζονται στη δεξιά προς τα αριστερά παράκαμψη του αίματος.


== Theft ==
=== Πνευμονική εμβολή ===
Because of the external location and the use of valuable precious metals including [[platinum]], [[palladium]], [[rhodium]] and gold, converters are a target for thieves. The problem is especially common among late-model trucks and SUVs, because of their high ground clearance and easily removed bolt-on catalytic converters. Welded-on converters are also at risk of theft, as they can be easily cut off.<ref>{{cite news | first = Brian | last = Fraga | title = Carver police investigating catalytic converter thefts | date = 30 November 2011 | url = http://www.southcoasttoday.com/apps/pbcs.dll/article?AID=/20111130/NEWS/111300325/-1/NEWSMAP | work = South Coast Today | accessdate = 21 December 2011}}</ref><ref>[http://www.chroniclet.com/2007/07/31/underhanded-thieves/ "Catalytic Converter Theft"].</ref><ref>[http://www.newsweek.com/id/88793 Murr, Andrew (9 January 2008). "An Exhausting New Crime&nbsp;— What Thieves Are Stealing from Today's Cars". ''Newsweek''. Retrieved 7 January 2011.]</ref> The techniques by thieves to quickly remove a converter, such as the use of a portable [[reciprocating saw]], can often damage other components of the car. Damage to components, such as wiring or a fuel line, can have dangerous consequences. Rises in metal costs in the U.S. during recent years have led to a large increase in converter theft.<ref>[http://www.msnbc.msn.com/id/23117250 Johnson, Alex (12 February 2008). "Stolen in 60 Seconds: The Treasure in Your Car&nbsp;— As Precious Metals Prices Soar, Catalytic Converters Are Targets for Thieves". ''MSNBC''. Retrieved 7 January 2011.]</ref> A catalytic converter can cost more than $1,000 to replace.<ref>{{Cite news|title=Converters Taken by Car Lot Thieves|date=2 July 2009|work=PoconoNews}}</ref>
Το μονοξείδιο του αζώτου χορηγείται επίσης ως θεραπεία διάσωσης (salvage therapy) σε ασθενείς με οξεία δεξιά κοιλιακή ανεπάρκεια (acute right ventricular failure) δευτερογενώς από πνευμονική εμβολή (pulmonary embolism).<ref name="pmid22005573">{{cite journal| vauthors=Summerfield DT, Desai H, Levitov A, Grooms DA, Marik PE | title=Inhaled Nitric Oxide as Salvage Therapy in Massive Pulmonaryembolism: A Case Series | journal=Respir Care | year= 2011 | volume= 57| issue= 3| pages= 444–8| pmid=22005573 | doi=10.4187/respcare.01373 }}</ref>


== Diagnostics ==
=== Φαρμακολογία ===
Various jurisdictions now require on-board diagnostics to monitor the function and condition of the emissions-control system, including the catalytic converter. On-board diagnostic systems take several forms.
Το μονοξείδιο του αζώτου θεωρείται αντιστηθαγχικό φάρμακο (Antianginal drug): Προκαλεί αγγειοδιαστολή, που μπορεί να βοηθήσει με τον ισχαιμικό πόνο, γνωστό ως στηθάγχη, μειώνοντας τον καρδιακό φόρτο εργασίας. Διαστέλλοντας τις αρτηρίες, τα φάρμακα του μονοξειδίου του αζώτου χαμηλώνουν την αρτηριακή πίεση και αφήνουν κοιλιακή πίεση πλήρωσης.<ref name="Jonathan Abrams 1996">{{cite journal|doi=10.1016/S0002-9149(96)00186-5|title=Beneficial actions of nitrates in cardiovascular disease|year=1996|last1=Abrams|first1=J|journal=The American Journal of Cardiology|volume=77|pages=31C–7C|pmid=8638524|issue=13}}</ref>


Temperature [[sensor]]s are used for two purposes. The first is as a warning system, typically on two-way catalytic converters such as are still sometimes used on LPG forklifts. The function of the sensor is to warn of catalytic converter temperature above the safe limit of {{convert|750|C|F}}. More-recent catalytic-converter designs are not as susceptible to temperature damage and can withstand sustained temperatures of {{convert|900|C|F}}.{{Citation needed|date=October 2007}} Temperature sensors are also used to monitor catalyst functioning: usually two sensors will be fitted, with one before the catalyst and one after to monitor the temperature rise over the catalytic-converter core.
Αυτή η αγγειοδιαστολή δεν μειώνει τον όγκο του αίματος που αντλεί η καρδιά, αλλά μάλλον μειώνει τη δύναμη που ο καρδιακός μυς πρέπει να εξασκήσει για να αντλήσει τον ίδιο όγκο αίματος. Χάπια νιτρογλυκερίνης, που παίρνονται υπογλώσσια (κάτω από τη γλώσσα), χρησιμοποιούνται για να αποτρέψουν ή να αντιμετωπίσουν οξύ πόνο στήθους. Η νιτρογλυκερίνη δρα με μια [[θειόλες|όξινη θειούχο]] ομάδα (–SH) για να παράξει μονοξείδιο του αζώτου, που απαλύνει τον πόνο προκαλώντας αγγειοδιαστολή. Υπάρχει ένας δυνητικός ρόλος για τη χρήση του μονοξειδίου του αζώτου σε ελάφρυνση συσταλτικών δυσλειτουργιών ουροδόχου κύστης,<ref name="Moro et al. 2013">{{cite journal | last1 = Moro| first1 = C | last2 = Leeds | first2 = C | last3 = Chess-Williams | first3 = R | title = Contractile activity of the bladder urothelium/lamina propria and its regulation by nitric oxide | journal = Eur J Pharmacol. |date=January 2012| volume = 674| issue = 2–3 | pages = 445–449| pmid = 22119378 | doi = 10.1016/j.ejphar.2011.11.020}}</ref><ref name="Andersson et al. 2008">{{cite journal | last1 = Andersson| first1 = M.C | last2 = Tobin | first2 = G | last3 = Giglio | first3 = D | title = Cholinergic nitric oxide release from the urinary bladder mucosa in cyclophosphamide-induced cystitis of the anaesthetized rat | journal = Br J Pharmacol |date=February 2008| volume = 153| issue = 7 | pages = 1438–44| pmc = 2437908 | doi = 10.1038/bjp.2008.6 | pmid=18246091}}</ref> και πρόσφατα στοιχεία προτείνουν ότι τα νιτρικά μπορεί να είναι ωφέλιμα για τη θεραπεία της στηθάγχης λόγω της μειωμένης κατανάλωσης μυοκαρδιακού οξυγόνου και με τη μείωση του προφορτίου και του μεταφορτίου καθώς και με κάποια άμεση αγγειοδιαστολή των στεφανιαίων αγγείων.<ref name="Jonathan Abrams 1996"/>


The [[Oxygen sensor#Automotive applications|oxygen sensor]] is the basis of the [[Feedback|closed-loop]] control system on a spark-ignited rich-burn engine; however, it is also used for diagnostics. In vehicles with [[OBD II]], a second oxygen sensor is fitted after the catalytic converter to monitor the O<sub>2</sub> levels. The O<sub>2</sub> levels are monitored to see the efficiency of the burn process. The on-board computer makes comparisons between the readings of the two sensors. The readings are taken by voltage measurements. If both sensors show the same output or the rear O<sub>2</sub> is "switching", the computer recognizes that the catalytic converter either is not functioning or has been removed, and will operate a malfunction indicator lamp and affect engine performance. Simple "oxygen sensor simulators" have been developed to circumvent this problem by simulating the change across the catalytic converter with plans and pre-assembled devices available on the Internet. Although these are not legal for on-road use, they have been used with mixed results.<ref>{{Cite news|url=http://eponline.com/articles/2007/07/01/settlement-involves-illegal-emission-control-defeat-devices-sold-for-autos.aspx|title=Settlement Involves Illegal Emission Control 'Defeat Devices' Sold for Autos|date=1 June 2007}}</ref> Similar devices apply an offset to the sensor signals, allowing the engine to run a more fuel-economical lean burn that may, however, damage the engine or the catalytic converter.<ref>{{Cite news|work=[[Concord Monitor]]|title=Check Engine Lights Come on for a Reason|date=12 January 2003}}</ref>
=== Συναφή προβλήματα ===
Υπάρχουν κάποια συναφή παράπονα με τη χρήση του μονοξειδίου του αζώτου σε νεογνά. Κάποια περιλαμβάνουν σφάλματα δόσης σχετικά με το σύστημα διανομής, κεφαλαλγίες σχετικές με την περιβαλλοντική έκθεση του μονοξειδίου του αζώτου στο νοσοκομειακό προσωπικό, υπόταση και υποξαιμία που σχετίζονται με οξεία στέρηση του φαρμάκου, καθώς και πνευμονικό οίδημα σε ασθενείς με σύνδρομο CREST.


NO<sub>x</sub> sensors are extremely expensive and are in general used only when a compression-ignition engine is fitted with a selective catalytic-reduction (SCR) converter, or a NO<sub>x</sub> absorber catalyst in a feedback system. When fitted to an SCR system, there may be one or two sensors. When one sensor is fitted it will be pre-catalyst; when two are fitted, the second one will be post-catalyst. They are used for the same reasons and in the same manner as an oxygen sensor; the only difference is the substance being monitored.{{Citation needed|date=July 2015}}
=== Μηχανισμός δράσης ===
Το μονοξείδιο του αζώτου είναι μια ένωση που παράγεται από πολλά κύτταρα του σώματος. Χαλαρώνει τους αγγειακούς λείους μυς συνδέοντας τους με το τμήμα της αίμης του κυτταροδιαλύματος της γουανιλικής κυκλάσης, που ενεργοποιεί τη γουανυλική κυκλάση και αυξάνει τα ενδοκυτταρικά επίπεδα της κυκλικής 3’,5’-μονοφωσφορικής γουανοσίνης, που στη συνέχεια οδηγούν σε αγγειοδιαστολή. Όταν εισπνέεται, το μονοξείδιο του αζώτου διαστέλλει την πνευμονική αγγείωση και έχει ελάχιστη επίδραση στην αγγείωση του συνολικού σώματος.<ref name="pmid16870914">{{cite journal|vauthors=Kinsella JP, Cutter GR, Walsh WF, Gerstmann DR, Bose CL, Hart C | title=Early inhaled nitric oxide therapy in premature newborns with respiratory failure | journal=N Engl J Med | year= 2006 | volume= 355 | issue= 4 | pages= 354–64 | pmid=16870914 | doi=10.1056/NEJMoa060442 | displayauthors=etal }}</ref>


== See also ==
Το εισπνεόμενο μονοξείδιο του αζώτου φαίνεται να αυξάνει τη μερική πίεση του αρτηριακού οξυγόνου (P<sub>a</sub>O<sub>2</sub>) διαστέλλοντας τα πνευμονικά αγγεία σε καλύτερα αεριζόμενες περιοχές του πνεύμονα, απομακρύνοντας τη πνευμονική ροή του αίματος από τα τμήματα του πνεύμονα με χαμηλούς λόγους αερισμού/διαπότισης (ventilation/perfusion ή V/Q) προς τα τμήματα με κανονικούς ή καλύτερους λόγους.<ref name="pmid16870913">{{cite journal|vauthors=Ballard RA, Truog WE, Cnaan A, Martin RJ, Ballard PL, Merrill JD | title=Inhaled nitric oxide in preterm infants undergoing mechanical ventilation | journal=N Engl J Med | year= 2006 | volume= 355 | issue= 4 | pages= 343–53 | pmid=16870913 | doi=10.1056/NEJMoa061088 | displayauthors=etal }}</ref>
* [[Catalytic heater]]
* [[Cerium(III) oxide]]
* [[NOx adsorber]]
* [[Roadway air dispersion modeling]]


== References ==
==== Φαρμακοκινητική ====
{{Reflist|30em}}
Το μονοξείδιο του αζώτου απορροφάται συστηματικά μετά από εισπνοή. Το μεγαλύτερο μέρος του κινείται κατά μήκος του πνευμονικού τριχοειδούς στρώματος όπου συνδυάζεται με την αιμογλοβίνη που είναι κορεσμένη με οξυγόνο από 60% έως 100%.


== Further reading ==
Τα νιτρικά έχουν ταυτοποιηθεί ως ο κύριος μεταβολίτης μονοξειδίου του αζώτου που αποβάλλεται στα ούρα, θεωρούμενος μεγαλύτερος από το 70% της εισπνεόμενης δόσης του μονοξειδίου του αζώτου. Τα νιτρικά καθαρίζονται από το πλάσμα από τα νεφρά με ρυθμούς που πλησιάζουν τον ρυθμό της σπειραματικής διήθησης.
* Keith, C. D., et al. {{US patent|3441381}}: ''"Apparatus for purifying exhaust gases of an internal combustion engine". 29 April 1969
* Lachman, I. M. et al. {{US patent|3885977}}: ''"Anisotropic Cordierite Monolith" (Ceramic substrate). 5 November 1973''
* Charles H. Bailey. {{US patent|4094645}}: ''"Combination muffler and catalytic converter having low backpressure". 13 June 1978
* Charles H. Bailey. {{US patent|4250146}}: '"Caseless monolithic catalytic converter". 10 February 1981
* Srinivasan Gopalakrishnan. {{Cite patent|GB|2397782}}: ''"Process And Synthesizer For Molecular Engineering of Materials". 13 March 2002''


== External links ==
== Επαγγελματική ασφάλεια και υγεία ==
* {{HowStuffWorks|catalytic-converter.htm}}
Οι άνθρωποι μπορούν να εκτεθούν στο μονοξείδιο του αζώτου στους τόπους εργασίας αναπνέοντάς το. Η Υπηρεσία Επαγγελματικής Ασφάλειας και Υγείας (Occupational Safety and Health Administration ή OSHA) έχει ορίσει το επιτρεπτό όριο ([[όριο επιτρεπτής έκθεσης]]) για την έκθεση σε μονοξείδιο του αζώτου στον τόπο εργασίας ως 25 ppm (30&nbsp;mg/m<sup>3</sup>) για εργάσιμη ημέρα 8 ωρών. Το Εθνικό Ινστιτούτο για την Επαγγελματική Υγεία και Ασφάλεια των ΗΠΑ (NIOSH) έχει ορίσει ως [[συνιστώμενο όριο έκθεσης]] (REL) 25 ppm (30&nbsp;mg/m<sup>3</sup>) για μια περίοδο εργασίας 8 ωρών. Σε επίπεδα 100 ppm, το μονοξείδιο του αζώτου καθίσταται άμεσα επικίνδυνο για τη ζωή και την υγεία.<ref>{{Cite web|title = CDC - NIOSH Pocket Guide to Chemical Hazards - Nitric oxide|url = http://www.cdc.gov/niosh/npg/npgd0448.html|website = www.cdc.gov|accessdate = 2015-11-20}}</ref>
* [http://www.ecfia.eu/benefits_automotive.htm Automotive applications of high temperature insulation wool]
* [http://catalyticconverter.photos/ Catalytic Converter Photos]


{{Automotive engine |collapsed}}
==Παραπομπές==
{{Reflist|30em}}


{{Authority control}}
==Παραπέρα μελέτη==
*Butler A. and Nicholson R.; [https://books.google.com/books?id=0d1Z0m76YeYC&printsec=frontcover "Life, death and NO."] Cambridge 2003. ISBN 978-0-85404-686-7.
*van Faassen, E. E.; Vanin, A. F. (eds); [https://books.google.com/books?id=UJ4glFNEcn0C&printsec=frontcover "Radicals for life: The various forms of Nitric Oxide."] Elsevier, Amsterdam 2007. ISBN 978-0-444-52236-8.
*Ignarro, L. J. (ed.); [https://books.google.com/books?id=h5FugARr4bgC&printsec=frontcover "Nitric oxide:biology and pathobiology."] Academic Press, San Diego 2000. ISBN 0-12-370420-0.


[[Category:Air pollution control systems]]
==Εξωτερικοί σύνδεσμοι==
[[Category:American inventions]]
*[http://www.inchem.org/documents/icsc/icsc/eics1311.htm International Chemical Safety Card 1311]
[[Category:Automotive technologies]]
*[http://www.cdc.gov/niosh/npg/npgd0448.html CDC – NIOSH Pocket Guide to Chemical Hazards]
[[Category:Catalysis]]
*[http://www.nobel.se/medicine/laureates/1998/index.html 1998 Nobel Prize in Physiology/Medicine for discovery of NO's role in cardiovascular regulation]
[[Category:Exhaust systems]]
*{{cite web|url= http://www.diabetesincontrol.com/burkearchive/summary.pdf |title=Nitric oxide and its role in health and diabetes. }}
[[Category:NOx control]]
*[http://mattson.creighton.edu/NOx/index.html Microscale Gas Chemistry: Experiments with Nitrogen Oxides]
[[Category:Carbon monoxide]]
*[http://www.livescience.com/980-brain-boots-computer.html Your Brain Boots Up Like a Computer] – new insights about the biological role of nitric oxide.
*[http://www.podiatrytoday.com/article/5164 Assessing The Potential of Nitric Oxide in the Diabetic Foot]
*[http://www.sciencedaily.com/releases/2007/11/071121213845.htm New Discoveries About Nitric Oxide Can Provide Drugs For Schizophrenia]
*[http://ull.chemistry.uakron.edu/erd/Chemicals/8000/6828.html Nitric Oxide at the Chemical Database]

{{Ενώσεις αζώτου1}}
{{Οξείδια}}
{{Ενώσεις οξυγόνου}}
{{Authority control}}


[[fi:Pakoputkisto#Katalysaattori]]
{{DEFAULTSORT:Nitric Oxide}}
[[Κατηγορία:Χημικές ρίζες]]
[[Κατηγορία:Ανόργανες ενώσεις του αζώτου]]
[[Κατηγορία:Νευροδιαβιβαστές]]
[[Κατηγορία:Κύκλος του αζώτου]]
[[Κατηγορία:Οξείδια]]

Έκδοση από την 15:41, 26 Φεβρουαρίου 2017

Πρότυπο:Use dmy dates

A three-way catalytic converter on a gasoline-powered 1996 Dodge Ram
Simulation of flow inside a catalytic converter

A catalytic converter is an emissions control device that converts toxic gases and pollutants in exhaust gas to less toxic pollutants by catalyzing a redox reaction (an oxidation and a reduction reaction). Catalytic converters are used with internal combustion engines fueled by either petrol (gasoline) or diesel—including lean-burn engines as well as kerosene heaters and stoves.

The first widespread introduction of catalytic converters was in the United States automobile market. To comply with the U.S. Environmental Protection Agency's stricter regulation of exhaust emissions, most gasoline-powered vehicles starting with the 1975 model year must be equipped with catalytic converters.[1][2][3][4] These "two-way" converters combined oxygen with carbon monoxide (CO) and unburned hydrocarbons (HC) to produce carbon dioxide (CO2) and water (H2O). In 1981, two-way catalytic converters were rendered obsolete by "three-way" converters that also reduce oxides of nitrogen (NOx);[1] however, two-way converters are still used for lean-burn engines. This is because three-way-converters require either rich or stoichiometric combustion to successfully reduce NOx.

Although catalytic converters are most commonly applied to exhaust systems in automobiles, they are also used on electrical generators, forklifts, mining equipment, trucks, buses, locomotives and motorcycles. They are also used on some wood stoves to control emissions.[5] This is usually in response to government regulation, either through direct environmental regulation or through health and safety regulations.

History

The catalytic converter was invented by Eugene Houdry, a French mechanical engineer and expert in catalytic oil refining,[6] who moved to the United States in 1930. When the results of early studies of smog in Los Angeles were published, Houdry became concerned about the role of smoke stack exhaust and automobile exhaust in air pollution and founded a company called Oxy-Catalyst. Houdry first developed catalytic converters for smoke stacks called "cats" for short, and later developed catalytic converters for warehouse forklifts that used low grade, unleaded gasoline.[7] In the mid-1950s, he began research to develop catalytic converters for gasoline engines used on cars. He was awarded United States Patent 2,742,437 for his work.[8]

Widespread adoption of catalytic converters did not occur until more stringent emission control regulations forced the removal of the anti-knock agent tetraethyl lead from most types of gasoline. Lead is a "catalyst poison" and would effectively disable a catalytic converter by forming a coating on the catalyst's surface.[9]

Catalytic converters were further developed by a series of engineers including John J. Mooney, Carl D. Keith, Antonio Eleazar at the Engelhard Corporation,[10] creating the first production catalytic converter in 1973.[11]

William C. Pfefferle developed a catalytic combustor for gas turbines in the early 1970s, allowing combustion without significant formation of nitrogen oxides and carbon monoxide.[12][13]

Construction

Cutaway of a metal-core converter
Ceramic-core converter

The catalytic converter's construction is as follows:

  1. The catalyst support or substrate. For automotive catalytic converters, the core is usually a ceramic monolith with a honeycomb structure. Metallic foil monoliths made of Kanthal (FeCrAl)[14] are used in applications where particularly high heat resistance is required.[14] Either material is designed to provide a large surface area. The cordierite ceramic substrate used in most catalytic converters was invented by Rodney Bagley, Irwin Lachman and Ronald Lewis at Corning Glass, for which they were inducted into the National Inventors Hall of Fame in 2002.[1]
  2. The washcoat. A washcoat is a carrier for the catalytic materials and is used to disperse the materials over a large surface area. Aluminum oxide, titanium dioxide, silicon dioxide, or a mixture of silica and alumina can be used. The catalytic materials are suspended in the washcoat prior to applying to the core. Washcoat materials are selected to form a rough, irregular surface, which greatly increases the surface area compared to the smooth surface of the bare substrate. This in turn maximizes the catalytically active surface available to react with the engine exhaust. The coat must retain its surface area and prevent sintering of the catalytic metal particles even at high temperatures (1000 °C).[15]
  3. Ceria or ceria-zirconia. These oxides are mainly added as oxygen storage promoters.[16]
  4. The catalyst itself is most often a mix of precious metals. Platinum is the most active catalyst and is widely used, but is not suitable for all applications because of unwanted additional reactions and high cost. Palladium and rhodium are two other precious metals used. Rhodium is used as a reduction catalyst, palladium is used as an oxidation catalyst, and platinum is used both for reduction and oxidation. Cerium, iron, manganese and nickel are also used, although each has limitations. Nickel is not legal for use in the European Union because of its reaction with carbon monoxide into toxic nickel tetracarbonyl.[εκκρεμεί παραπομπή] Copper can be used everywhere except Japan.Πρότυπο:Clarify

Upon failure, a catalytic converter can be recycled into scrap. The precious metals inside the converter, including platinum, palladium and rhodium, are extracted.

Placement Of Catalytic Converters

Catalytic converters require temperature of 800 degrees Fahrenheit (426 C) to efficiently convert harmful exhaust gases into inert ones, such as carbon dioxide and water vapor. So, first catalytic converters were placed close to the engine to ensure fast heating. However, such placing caused several problems, such as vapor lock.

As an alternative, catalytic converters were moved to a third of the way back from the engine, and were then placed underneath the vehicle.

In the 1990s, integrated catalytic converters[17] were developed, which, as the name suggests, were integrated into exhaust manifold assemblies. Their high efficiency, safety and space-saving capability quickly earned them a popularity. Today, almost every new vehicle sold in the United States is equipped with integrated catalytic converters.

Types

Two-way

A 2-way (or "oxidation", sometimes called an "oxi-cat") catalytic converter has two simultaneous tasks:

  1. Oxidation of carbon monoxide to carbon dioxide: 2CO + O2 → 2CO2
  2. Oxidation of hydrocarbons (unburned and partially burned fuel) to carbon dioxide and water: CxH2x+2 + [(3x+1)/2] O2 → xCO2 + (x+1) H2O (a combustion reaction)

This type of catalytic converter is widely used on diesel engines to reduce hydrocarbon and carbon monoxide emissions. They were also used on gasoline engines in American- and Canadian-market automobiles until 1981. Because of their inability to control oxides of nitrogen, they were superseded by three-way converters.

Three-way

Three-way catalytic converters (TWC) have the additional advantage of controlling the emission of nitric oxide and nitrogen dioxide (both together abbreviated with NOx and not to be confused with nitrous oxide), which are precursors to acid rain and smog.

Since 1981, "three-way" (oxidation-reduction) catalytic converters have been used in vehicle emission control systems in the United States and Canada; many other countries have also adopted stringent vehicle emission regulations that in effect require three-way converters on gasoline-powered vehicles. The reduction and oxidation catalysts are typically contained in a common housing; however, in some instances, they may be housed separately. A three-way catalytic converter has three simultaneous tasks:

  1. Reduction of nitrogen oxides to nitrogen and oxygen: 2NOx → xO2 + N2
  2. Oxidation of carbon monoxide to carbon dioxide: 2CO + O2 → 2CO2
  3. Oxidation of unburnt hydrocarbons (HC) to carbon dioxide and water: CxH2x+2 + [(3x+1)/2]O2 → xCO2 + (x+1)H2O.

These three reactions occur most efficiently when the catalytic converter receives exhaust from an engine running slightly above the stoichiometric point. For gasoline combustion, this ratio is between 14.6 and 14.8 parts air to one part fuel, by weight. The ratio for Autogas (or liquefied petroleum gas LPG), natural gas and ethanol fuels is slightly different for each, requiring modified fuel system settings when using those fuels. In general, engines fitted with 3-way catalytic converters are equipped with a computerized closed-loop feedback fuel injection system using one or more oxygen sensors[εκκρεμεί παραπομπή], though early in the deployment of three-way converters, carburetors equipped with feedback mixture control were used.

Three-way converters are effective when the engine is operated within a narrow band of air-fuel ratios near the stoichiometric point, such that the exhaust gas composition oscillates between rich (excess fuel) and lean (excess oxygen). Conversion efficiency falls very rapidly when the engine is operated outside of this band. Under lean engine operation, the exhaust contains excess oxygen, and the reduction of NOx is not favored. Under rich conditions, the excess fuel consumes all of the available oxygen prior to the catalyst, leaving only oxygen stored in the catalyst available for the oxidation function.

Closed-loop engine control systems are necessary for effective operation of three-way catalytic converters because of the continuous balancing required for effective NOx reduction and HC oxidation. The control system must prevent the NOx reduction catalyst from becoming fully oxidized, yet replenish the oxygen storage material so that its function as an oxidation catalyst is maintained.

Three-way catalytic converters can store oxygen from the exhaust gas stream, usually when the air–fuel ratio goes lean.[18] When sufficient oxygen is not available from the exhaust stream, the stored oxygen is released and consumed (see cerium(IV) oxide). A lack of sufficient oxygen occurs either when oxygen derived from NOx reduction is unavailable or when certain maneuvers such as hard acceleration enrich the mixture beyond the ability of the converter to supply oxygen.

Unwanted reactions

Unwanted reactions can occur in the three-way catalyst, such as the formation of odoriferous hydrogen sulfide and ammonia. Formation of each can be limited by modifications to the washcoat and precious metals used. It is difficult to eliminate these byproducts entirely. Sulfur-free or low-sulfur fuels eliminate or reduce hydrogen sulfide.

For example, when control of hydrogen-sulfide emissions is desired, nickel or manganese is added to the washcoat. Both substances act to block the absorption of sulfur by the washcoat. Hydrogen sulfide is formed when the washcoat has absorbed sulfur during a low-temperature part of the operating cycle, which is then released during the high-temperature part of the cycle and the sulfur combines with HC.

Diesel engines

For compression-ignition (i.e., diesel engines), the most commonly used catalytic converter is the diesel oxidation catalyst (DOC). DOCs contain palladium, platinum and aluminium oxide, all of which serve as catalysts to oxidize the hydrocarbons and carbon monoxide with oxygen to form carbon dioxide and water.

2CO + O2 → 2CO2

CxH2x+2 + [(3x+1)/2] O2x CO2 + (x+1) H2O

These converters often operate at 90 percent efficiency, virtually eliminating diesel odor and helping reduce visible particulates (soot). These catalysts are not active for NOx reduction because any reductant present would react first with the high concentration of O2 in diesel exhaust gas.

Reduction in NOx emissions from compression-ignition engines has previously been addressed by the addition of exhaust gas to incoming air charge, known as exhaust gas recirculation (EGR). In 2010, most light-duty diesel manufacturers in the U.S. added catalytic systems to their vehicles to meet new federal emissions requirements. There are two techniques that have been developed for the catalytic reduction of NOx emissions under lean exhaust conditions: selective catalytic reduction (SCR) and the lean NOx trap or NOx adsorber. Instead of precious metal-containing NOx absorbers, most manufacturers selected base-metal SCR systems that use a reagent such as ammonia to reduce the NOx into nitrogen. Ammonia is supplied to the catalyst system by the injection of urea into the exhaust, which then undergoes thermal decomposition and hydrolysis into ammonia. One trademark product of urea solution, also referred to as Diesel Exhaust Fluid (DEF), is AdBlue.

Diesel exhaust contains relatively high levels of particulate matter (soot), consisting largely of elemental carbon. Catalytic converters cannot clean up elemental carbon, though they do remove up to 90 percent of the soluble organic fraction,[εκκρεμεί παραπομπή] so particulates are cleaned up by a soot trap or diesel particulate filter (DPF). Historically, a DPF consists of a cordierite or silicon carbide substrate with a geometry that forces the exhaust flow through the substrate walls, leaving behind trapped soot particles. Contemporary DPFs can be manufactured from a variety of rare metals that provide superior performance (at a greater expense).[19] As the amount of soot trapped on the DPF increases, so does the back pressure in the exhaust system. Periodic regenerations (high temperature excursions) are required to initiate combustion of the trapped soot and thereby reducing the exhaust back pressure. The amount of soot loaded on the DPF prior to regeneration may also be limited to prevent extreme exotherms from damaging the trap during regeneration. In the U.S., all on-road light, medium and heavy-duty vehicles powered by diesel and built after January 1, 2007, must meet diesel particulate emission limits, meaning that they effectively have to be equipped with a 2-way catalytic converter and a diesel particulate filter. Note that this applies only to the diesel engine used in the vehicle. As long as the engine was manufactured before January 1, 2007, the vehicle is not required to have the DPF system. This led to an inventory runup by engine manufacturers in late 2006 so they could continue selling pre-DPF vehicles well into 2007.[20] During the re-generation cycle, most systems require the engine to consume more fuel in a relatively short amount of time in order to generate the high temperatures necessary for the cycle to complete. This adversely affects the overall fuel economy of vehicles equipped with DPF systems, especially in vehicles that are driven mostly in city conditions where frequent acceleration requires a larger amount of fuel to be burned and therefore more soot to collect in the exhaust system.

Lean-burn spark-ignition engines

For lean-burn spark-ignition engines, an oxidation catalyst is used in the same manner as in a diesel engine. Emissions from lean burn spark ignition engines are very similar to emissions from a diesel compression ignition engine.

Installation

Many vehicles have a close-coupled catalytic converter located near the engine's exhaust manifold. The converter heats up quickly, due to its exposure to the very hot exhaust gases, enabling it to reduce undesirable emissions during the engine warm-up period. This is achieved by burning off the excess hydrocarbons which result from the extra-rich mixture required for a cold start.

When catalytic converters were first introduced, most vehicles used carburetors that provided a relatively rich air-fuel ratio. Oxygen (O2) levels in the exhaust stream were therefore generally insufficient for the catalytic reaction to occur efficiently. Most designs of the time therefore included secondary air injection, which injected air into the exhaust stream. This increased the available oxygen, allowing the catalyst to function as intended.

Some three-way catalytic converter systems have air injection systems with the air injected between the first (NOx reduction) and second (HC and CO oxidation) stages of the converter. As in two-way converters, this injected air provides oxygen for the oxidation reactions. An upstream air injection point, ahead of the catalytic converter, is also sometimes present to provide additional oxygen only during the engine warm up period. This causes unburned fuel to ignite in the exhaust tract, thereby preventing it reaching the catalytic converter at all. This technique reduces the engine runtime needed for the catalytic converter to reach its "light-off" or operating temperature.

Most newer vehicles have electronic fuel injection systems, and do not require air injection systems in their exhausts. Instead, they provide a precisely controlled air-fuel mixture that quickly and continually cycles between lean and rich combustion. Oxygen sensors are used to monitor the exhaust oxygen content before and after the catalytic converter, and this information is used by the Electronic Control Unit to adjust the fuel injection so as to prevent the first (NOx reduction) catalyst from becoming oxygen-loaded, while simultaneously ensuring the second (HC and CO oxidation) catalyst is sufficiently oxygen-saturated.

Damage

Catalyst poisoning occurs when the catalytic converter is exposed to exhaust containing substances that coat the working surfaces, so that they cannot contact and react with the exhaust. The most notable contaminant is lead, so vehicles equipped with catalytic converters can run only on unleaded fuel. Other common catalyst poisons include sulfur, manganese (originating primarily from the gasoline additive MMT) and silicon, which can enter the exhaust stream if the engine has a leak that allows coolant into the combustion chamber. Phosphorus is another catalyst contaminant. Although phosphorus is no longer used in gasoline, it (and zinc, another low-level catalyst contaminant) was until recently widely used in engine oil antiwear additives such as zinc dithiophosphate (ZDDP). Beginning in 2004, a limit of phosphorus concentration in engine oils was adopted in the API SM and ILSAC GF-4 specifications.

Depending on the contaminant, catalyst poisoning can sometimes be reversed by running the engine under a very heavy load for an extended period of time. The increased exhaust temperature can sometimes vaporise or sublimate the contaminant, removing it from the catalytic surface. However, removal of lead deposits in this manner is usually not possible because of lead's high boiling point.

Any condition that causes abnormally high levels of unburned hydrocarbons—raw or partially burnt fuel—to reach the converter will tend to significantly elevate its temperature, bringing the risk of a meltdown of the substrate and resultant catalytic deactivation and severe exhaust restriction. Usually the ignition system e.g. coil packs and/or primary ignition components (e.g. distributor cap, wires, ignition coil and spark plugs) and/or damaged fuel system components (fuel injectors, fuel pressure regulator, and associated sensors) could damage a catalytic converter - this also includes using a thicker oil viscosity not recommended by the manufacturer (especially with ZDDP content), oil and/or coolant leaks. Vehicles equipped with OBD-II diagnostic systems are designed to alert the driver to a misfire condition by means of illuminating the "check engine" light on the dashboard, or flashing it if the current misfire conditions are severe enough to potentially damage the catalytic converter.

Regulations

Πρότυπο:Refimprove section

Emissions regulations vary considerably from jurisdiction to jurisdiction. Most automobile spark-ignition engines in North America have been fitted with catalytic converters since 1975,[1][2][3][4] and the technology used in non-automotive applications is generally based on automotive technology.

Regulations for diesel engines are similarly varied, with some jurisdictions focusing on NOx (nitric oxide and nitrogen dioxide) emissions and others focusing on particulate (soot) emissions. This regulatory diversity is challenging for manufacturers of engines, as it may not be economical to design an engine to meet two sets of regulations.

Regulations of fuel quality vary across jurisdictions. In North America, Europe, Japan and Hong Kong, gasoline and diesel fuel are highly regulated, and compressed natural gas and LPG (Autogas) are being reviewed for regulation. In most of Asia and Africa, the regulations are often lax: in some places sulfur content of the fuel can reach 20,000 parts per million (2%). Any sulfur in the fuel can be oxidized to SO2 (sulfur dioxide) or even SO3 (sulfur trioxide) in the combustion chamber. If sulfur passes over a catalyst, it may be further oxidized in the catalyst, i.e., SO2 may be further oxidized to SO3. Sulfur oxides are precursors to sulfuric acid, a major component of acid rain. While it is possible to add substances such as vanadium to the catalyst washcoat to combat sulfur-oxide formation, such addition will reduce the effectiveness of the catalyst. The most effective solution is to further refine fuel at the refinery to produce ultra-low sulfur diesel. Regulations in Japan, Europe and North America tightly restrict the amount of sulfur permitted in motor fuels. However, the direct financial expense of producing such clean fuel may make it impractical for use in developing countries. As a result, cities in these countries with high levels of vehicular traffic suffer from acid rain[εκκρεμεί παραπομπή], which damages stone and woodwork of buildings, poisons humans and other animals, and damages local ecosystems, at a very high financial cost.

Negative aspects

Catalytic converters restrict the free flow of exhaust, which negatively affects vehicle performance and fuel economy, especially in older cars.[21] Because early cars' carburetors were incapable of precise fuel-air mixture control, the cars' catalytic converters could overheat and ignite flammable materials under the car.[22] A 2006 test on a 1999 Honda Civic showed that removing the stock catalytic converter netted a 3% increase in horsepower; a new metallic core converter only cost the car 1% horsepower, compared to no converter.[23] To some performance enthusiasts, this modest increase in power for very little cost encourages the removal or "gutting" of the catalytic converter.[21][24] In such cases, the converter may be replaced by a welded-in section of ordinary pipe or a flanged "test pipe", ostensibly meant to check if the converter is clogged, by comparing how the engine runs with and without the converter. This facilitates temporary reinstallation of the converter in order to pass an emission test.[23] In many jurisdictions, it is illegal to remove or disable a catalytic converter for any reason other than its direct and immediate replacement. In the United States, for example, it is a violation of Section 203(a)(3)(A) of the 1990 Clean Air Act for a vehicle repair shop to remove a converter from a vehicle, or cause a converter to be removed from a vehicle, except in order to replace it with another converter,[25] and Section 203(a)(3)(B) makes it illegal for any person to sell or to install any part that would bypass, defeat or render inoperative any emission control system, device or design element. Vehicles without functioning catalytic converters generally fail emission inspections. The automotive aftermarket supplies high-flow converters for vehicles with upgraded engines, or whose owners prefer an exhaust system with larger-than-stock capacity.[26]

Warm-up period

Vehicles fitted with catalytic converters emit most of their total pollution during the first five minutes of engine operation; for example, before the catalytic converter has warmed up sufficiently to be fully effective.[27]

In 1995, Alpina introduced an electrically heated catalyst. Called "E-KAT," it was used in Alpina's B12 5,7 E-KAT based on the BMW 750i.[28] Heating coils inside the catalytic converter assemblies are electrified just after the engine is started, bringing the catalyst up to operating temperature very quickly to qualify the vehicle for low emission vehicle (LEV) designation.[29] BMW later introduced the same heated catalyst, developed jointly by Emitec, Alpina and BMW,[28] in its 750i in 1999.[29]

Some vehicles contain a pre-cat, a small catalytic converter upstream of the main catalytic converter which heats up faster on vehicle start up, reducing the emissions associated with cold starts. A pre-cat is most commonly used by an auto manufacturer when trying to attain the Ultra Low Emissions Vehicle (ULEV) rating, such as on the Toyota MR2 Roadster.[30]

Environmental impact

Catalytic converters have proven to be reliable and effective in reducing noxious tailpipe emissions. However, they also have some shortcomings in use, and also adverse environmental impacts in production:

  • An engine equipped with a three-way catalyst must run at the stoichiometric point, which means more fuel is consumed than in a lean-burn engine. This means approximately 10% more CO2 emissions from the vehicle.
  • Catalytic converter production requires palladium or platinum; part of the world supply of these precious metals is produced near Norilsk, Russia, where the industry (among others) has caused Norilsk to be added to Time magazine's list of most-polluted places.[31]

Theft

Because of the external location and the use of valuable precious metals including platinum, palladium, rhodium and gold, converters are a target for thieves. The problem is especially common among late-model trucks and SUVs, because of their high ground clearance and easily removed bolt-on catalytic converters. Welded-on converters are also at risk of theft, as they can be easily cut off.[32][33][34] The techniques by thieves to quickly remove a converter, such as the use of a portable reciprocating saw, can often damage other components of the car. Damage to components, such as wiring or a fuel line, can have dangerous consequences. Rises in metal costs in the U.S. during recent years have led to a large increase in converter theft.[35] A catalytic converter can cost more than $1,000 to replace.[36]

Diagnostics

Various jurisdictions now require on-board diagnostics to monitor the function and condition of the emissions-control system, including the catalytic converter. On-board diagnostic systems take several forms.

Temperature sensors are used for two purposes. The first is as a warning system, typically on two-way catalytic converters such as are still sometimes used on LPG forklifts. The function of the sensor is to warn of catalytic converter temperature above the safe limit of 750 °C (1,380 °F). More-recent catalytic-converter designs are not as susceptible to temperature damage and can withstand sustained temperatures of 900 °C (1,650 °F).[εκκρεμεί παραπομπή] Temperature sensors are also used to monitor catalyst functioning: usually two sensors will be fitted, with one before the catalyst and one after to monitor the temperature rise over the catalytic-converter core.

The oxygen sensor is the basis of the closed-loop control system on a spark-ignited rich-burn engine; however, it is also used for diagnostics. In vehicles with OBD II, a second oxygen sensor is fitted after the catalytic converter to monitor the O2 levels. The O2 levels are monitored to see the efficiency of the burn process. The on-board computer makes comparisons between the readings of the two sensors. The readings are taken by voltage measurements. If both sensors show the same output or the rear O2 is "switching", the computer recognizes that the catalytic converter either is not functioning or has been removed, and will operate a malfunction indicator lamp and affect engine performance. Simple "oxygen sensor simulators" have been developed to circumvent this problem by simulating the change across the catalytic converter with plans and pre-assembled devices available on the Internet. Although these are not legal for on-road use, they have been used with mixed results.[37] Similar devices apply an offset to the sensor signals, allowing the engine to run a more fuel-economical lean burn that may, however, damage the engine or the catalytic converter.[38]

NOx sensors are extremely expensive and are in general used only when a compression-ignition engine is fitted with a selective catalytic-reduction (SCR) converter, or a NOx absorber catalyst in a feedback system. When fitted to an SCR system, there may be one or two sensors. When one sensor is fitted it will be pre-catalyst; when two are fitted, the second one will be post-catalyst. They are used for the same reasons and in the same manner as an oxygen sensor; the only difference is the substance being monitored.[εκκρεμεί παραπομπή]

See also

References

  1. 1,0 1,1 1,2 1,3 Palucka, Tim (Winter 2004). «Doing the Impossible». Invention & Technology 19 (3). Αρχειοθετήθηκε από το πρωτότυπο στις 3 December 2008. https://web.archive.org/web/20081203124718/http://www.americanheritage.com/articles/magazine/it/2004/3/2004_3_22.shtml. Ανακτήθηκε στις 14 December 2011. 
  2. 2,0 2,1 Petersen Publishing (1975). «The Catalytic Converter». Στο: Erwin M. Rosen. The Petersen Automotive Troubleshooting & Repair Manual. New York, NY: Grosset & Dunlap. σελ. 493. ISBN 0-448-11946-3. For years, the exhaust system (...) remained virtually unchanged until 1975 when a strange new component was added. It's called a catalytic converter(...) CS1 maint: Uses editors parameter (link)
  3. 3,0 3,1 «General Motors Believes it has an Answer to the Automotive Air Pollution Problem». The Blade: Toledo, Ohio. 12 September 1974. https://news.google.com/newspapers?id=9tBOAAAAIBAJ&sjid=IAIEAAAAIBAJ&dq=catalytic-converter&pg=6404%2C6576523. Ανακτήθηκε στις 14 December 2011. 
  4. 4,0 4,1 «Catalytic Converter Heads Auto Fuel Economy Efforts». The Milwaukee Sentinel. 11 November 1974. https://news.google.com/newspapers?id=FXVQAAAAIBAJ&sjid=vBEEAAAAIBAJ&dq=catalytic-converter&pg=6134%2C2245045. Ανακτήθηκε στις 14 December 2011. 
  5. «Choosing the Right Wood Stove». Burn Wise. US EPA. Ανακτήθηκε στις 2 Ιανουαρίου 2012. 
  6. Csere, Csaba (January 1988). «10 Best Engineering Breakthroughs». Car and Driver 33 (7): 63. 
  7. "Exhaust Gas Made Safe" Popular Mechanics, September 1951, p. 134, bottom of page
  8. "His Smoke Eating Cats Now Attack Traffic Smog". Popular Science, June 1955, pp. 83-85/244.
  9. «Eugene Houdry». Chemical Heritage Foundation. Ανακτήθηκε στις 27 Οκτωβρίου 2016. 
  10. (Απαιτείται εγγραφή) "Carl D. Keith, a Father of the Catalytic Converter, Dies at 88". The New York Times. 15 November 2008.
  11. [Αναξιόπιστη πηγή ;] Staff writer (undated). "Engelhard Corporation". referenceforbusiness.com. Retrieved 7 January 2011.
  12. Robert N. Carter, Lance L. Smith, Hasan Karim, Marco Castaldi, Shah Etemad, George Muench, R. Samuel Boorse, Paul Menacherry and William C. Pfefferle (1998). "Catalytic Combustion Technology Development for Gas Turbine Engine Applications". MRS Proceedings, 549, 93 doi:10.1557/PROC-549-93
  13. Worthy, Sharon. "Connecticut chemist receives award for cleaner air technology". Bio-Medicine. 23 June 2003. Retrieved 11 December 2012.
  14. 14,0 14,1 Pischinger, Univ.-Prof. Dr.-Ing. Stephan (2011). Verbrennungsmotoren Band 2 (24 έκδοση). Aachen, Germany: Lehrstuhl Für Verbrennungskraftmachinen. σελ. 335. 
  15. Martin Votsmeier, Thomas Kreuzer, Jürgen Gieshoff, Gerhard Lepperhoff. Automobile Exhaust Control, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH 2002. DOI: 10.1002/14356007.a03_189.pub2
  16. Kašpar, J.; Fornasiero, P.; Graziani, M. (1999). «Use of CeO2-based oxides in the three-way catalysis». Catalysis Today 50 (2): 285–298. doi:10.1016/S0920-5861(98)00510-0. ISSN 0920-5861. 
  17. «Placement Of Catalytic Converters». 
  18. Brandt, Erich; Wang, Yanying; Grizzle, Jessy (2000). «Dynamic Modeling of a Three Way Catalyst for SI Engine Exhaust Emission Control». IEEE Transactions on Control Systems Technology 8 (5): 767–776. doi:10.1109/87.865850. http://web.eecs.umich.edu/~grizzle/papers/TWC98.pdf. 
  19. http://www.synergycatalyst.com/catalyst-coating-technology/
  20. «"Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements"» (PDF).  (123 KB)
  21. 21,0 21,1 Crutsinger, Martin (29 September 1982). «Kits to Foil Auto Pollution Control Are Selling Well». The Gainesville Sun. 
  22. Ullman, Owen (14 June 1976). «Catalytic Converter Still Controversial after Two Years of Use». The BulletinΠρότυπο:Clarify. 
  23. 23,0 23,1 «Beat the Law». Import Tuner. 1 Οκτωβρίου 2006. Αρχειοθετήθηκε από το πρωτότυπο στις 28 Φεβρουαρίου 2014. Ανακτήθηκε στις 9 Ιανουαρίου 2011. 
  24. «Some of Us Can Only Afford a Clunker». The Palm Beach Post. 23 February 1996. 
  25. Sale and Use of Aftermarket Catalytic Converters, US Environmental Protection Agency, US Federal Register Volume 51
  26. Tanner, Keith. Mazda MX-5 Miata. Motorbooks. σελ. 120. 
  27. Catalytic converters, nsls.bnl.gov
  28. 28,0 28,1 «Milestones». alpina-automobiles.com. Ανακτήθηκε στις 5 Ιουνίου 2015. 
  29. 29,0 29,1 Edgar, Julian (5 Οκτωβρίου 1999). «Goodbye 12 volts... hello 42 volts!». Autospeed. Ανακτήθηκε στις 2 Ιανουαρίου 2012. The current model BMW 750iL has a maximum electrical load of 428 amps (5.9 kW)! In this car, over half of the maximum load is from the short-term electrical heating of the catalytic converters 
  30. http://www.toyotaownersclub.com/forums/topic/70844-pre-cats-what-you-should-know/
  31. Walsh, Bryan (12 September 2007). «Norilsk, Russia». The World's Most Polluted Places (Time). http://www.time.com/time/specials/2007/article/0,28804,1661031_1661028_1661022,00.html. Ανακτήθηκε στις 7 January 2011. 
  32. Fraga, Brian (30 November 2011). «Carver police investigating catalytic converter thefts». South Coast Today. http://www.southcoasttoday.com/apps/pbcs.dll/article?AID=/20111130/NEWS/111300325/-1/NEWSMAP. Ανακτήθηκε στις 21 December 2011. 
  33. "Catalytic Converter Theft".
  34. Murr, Andrew (9 January 2008). "An Exhausting New Crime — What Thieves Are Stealing from Today's Cars". Newsweek. Retrieved 7 January 2011.
  35. Johnson, Alex (12 February 2008). "Stolen in 60 Seconds: The Treasure in Your Car — As Precious Metals Prices Soar, Catalytic Converters Are Targets for Thieves". MSNBC. Retrieved 7 January 2011.
  36. «Converters Taken by Car Lot Thieves». PoconoNews. 2 July 2009. 
  37. «Settlement Involves Illegal Emission Control 'Defeat Devices' Sold for Autos». 1 June 2007. http://eponline.com/articles/2007/07/01/settlement-involves-illegal-emission-control-defeat-devices-sold-for-autos.aspx. 
  38. «Check Engine Lights Come on for a Reason». Concord Monitor. 12 January 2003. 

Further reading

"Apparatus for purifying exhaust gases of an internal combustion engine". 29 April 1969
"Anisotropic Cordierite Monolith" (Ceramic substrate). 5 November 1973
"Combination muffler and catalytic converter having low backpressure". 13 June 1978
'"Caseless monolithic catalytic converter". 10 February 1981
  • Srinivasan Gopalakrishnan. GB 2397782 : "Process And Synthesizer For Molecular Engineering of Materials". 13 March 2002

Πρότυπο:Automotive engine