Μετάβαση στο περιεχόμενο

Κυρτό σύνολο

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Κυρτό (επάνω) και μη κυρτό (κάτω) σύνολο.

Στα μαθηματικά, ένα σύνολο λέγεται κυρτό όταν για οποιαδήποτε δύο σημεία του συνόλου, όλα τα σημεία του ευθύγραμμου τμήματος που τα ενώνει ανήκουν μέσα στο σύνολο.[1][2][3] Στην αντίθετη περίπτωση, δηλαδή όταν υπάρχουν ζεύγη σημείων των οποίων το ευθύγραμμο τμήμα δεν βρίσκεται ολόκληρο μέσα στο σύνολο, το σύνολο λέγεται μη κυρτό.

Κυρτό είναι το σύνολο της επάνω εικόνας, το οποίο περικλείεται από τη γραμμή. Μη κυρτά είναι η ίδια η γραμμή που περικλείει το κυρτό σύνολο, το εξωτερικό του κυρτού συνόλου, καθώς και το σχήμα της κάτω εικόνας.

Ένα σύνολο είναι κυρτό αν για κάθε δύο σημεία , ο κυρτός συνδυασμός τους είναι επίσης στο . Ισοδύναμα,

  • Το σύνολο είναι κυρτό.
  • Το κενό σύνολο είναι κυρτό.
  • Το σύνολο με ένα σημείο είναι κυρτό.
  • Κάθε διάστημα στο είναι ένα κυρτό σύνολο.
  • Η τομή κυρτών συνόλων είναι κυρτό σύνολο.
  • Η ένωση δύο κυρτών συνόλων δεν είναι κατά ανάγκη κυρτό σύνολο.


  1. Γιαννόπουλος, Απόστολος. «Κυρτή ανάλυση: Εισαγωγή» (PDF). Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Ανακτήθηκε στις 10 Ιουλίου 2023. 
  2. Papadimitriou, Christos H.· Steiglitz, Kenneth (1982). Combinatorial optimization: algorithms and complexity (6η έκδοση). Englewood Cliffs, N.J: Prentice-Hall. ISBN 9780131524620. 
  3. Boyd, Stephen· Vandenberghe, Lieven. «Convex Optimization: Convex Sets» (PDF). Stanford University. Ανακτήθηκε στις 10 Ιουλίου 2023.