Αντίσωμα

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Μετάβαση σε: πλοήγηση, αναζήτηση

Ένα αντίσωμα γνωστό και ως ανοσοσφαιρίνη είναι ένα μεγάλο σχήματος Υ πρωτεϊνικό μόριο που χρησιμοποιείται από το ανοσοποιητικό σύστημα για να αναγνωρίσει και να ακινητοποιήσει ξένα αντικείμενα όπως είναι τα βακτήρια και οι ιοί. Το αντίσωμα αναγνωρίζει ένα μοναδικό κομμάτι του εισβολέα που ονομάζεται αντιγόνο. Κάθε κορυφή της δομής Υ περιέχει μια δομή ανάλογη με κλειδαριά που είναι ειδική για ένα συγκεκριμένο σήμα σε ένα αντιγόνο επιτρέποντας στις δύο δομές να συνδέονται με ακρίβεια. Με την σύνδεση ένα αντίσωμα μπορεί να καταδείξει ένα μικρόβιο ή ένα μολυσμένο κύτταρο για επίθεση από άλλα κομμάτια του ανοσοποιητικού συστήματος, ή να εξουδετερώσει το στόχο του απευθείας. Η παραγωγή αντισωμάτων είναι η κύρια λειτουργία της χυμικής ανοσίας.

Πώς παράγονται[Επεξεργασία | επεξεργασία κώδικα]

Τα αντισώματα παράγονται από ένα τύπο λευκοκυττάρων που ονομάζεται πλασματοκύτταρο. Τα αντισώματα μπορούν να υπάρξουν σε δύο μορφές, μια διαλυτή μορφή που εκκρίνεται από το κύτταρο και μια μεμβρανο-συνδετή μορφή που προσκολλάται στην επιφάνεια ενός Β λεμφοκυττάρου και ονομάζεται υποδοχέας κυττάρου Β (B cell receptor BCR). Η BCR μορφή εντοπίζεται μόνο στην επιφάνεια των Β λεμφοκυττάρων και οδηγεί στην ενεργοποίηση των κυττάρων αυτών και την επακόλουθη διαφοροποίηση τους είτε σε εργοστάσια αντισωμάτων που ονομάζονται πλασματοκύτταρα είτε σε κύτταρα μνήμης Β τα οποία θα επιζήσουν στο σώμα και θα "θυμούνται" το συγκεκριμένο αντιγόνο ώστε τα κύτταρα Β να αντιδράσουν γρηγορότερα σε μελλοντική έκθεση σε αυτό. Στις περισσότερες περιπτώσεις η αντίδραση των Β κυττάρων με ένα Τ βοηθητικό κύτταρο είναι απαραίτητη για να παραχθούν πλήρως ενεργά Β κύτταρα και ως αποτέλεσμα δημιουργία αντισωμάτων και αντιγονοδέσμευση. Τα διαλυτά αντισώματα απελευθερώνονται στο αίμα και στα ιστικά υγρά όπως και σε πολλές εκκρίσεις ώστε να συνεχίσουν την έρευνα για εισβάλλοντες μικροοργανισμούς.

Η δομή[Επεξεργασία | επεξεργασία κώδικα]

Τα αντισώματα είναι γλυκοπρωτεΐνες που ανήκουν στην υπεροικογένεια των αιμοσφαιρινών. Οι όροι αντίσωμα και ανοσοσφαιρίνη συχνά χρησιμοποιούνται αδιάκριτα. Τα αντισώματα είναι τυπικά κατασκευασμένα από βασικά δομικά μόρια- το καθένα από δύο μεγάλες βαριές αλυσίδες και δύο μικρότερες ελαφριές αλυσίδες. Υπάρχουν αρκετοί διαφορετικοί τύποι αντισωμικών βαριών και ελαφριών αλυσίδων και αρκετά διαφορετικά είδη αντισωμάτων τα οποία ομαδοποιούνται σε διαφορετικά ισότοπα ανάλογα με ποια βαριά αλυσίδα περιέχουν.

Aν και η γενικότερη δομή όλων των αντισωμάτων είναι παρόμοια, μια μικρή περιοχή στην κορυφή της πρωτεΐνης είναι εξαιρετικά ποικιλόμορφη επιτρέποντας την ύπαρξη εκατομμυρίων αντισωμάτων με ελάχιστα διαφορετική κορυφαία δομή ή περιοχές δέσμευσης αντιγόνου. Η περιοχή αυτή είναι γνωστή και ως μεταβλητή περιοχή. Κάθε μια από αυτές τις διαφορετικές δομές μπορούν να συνδεθούν με διαφορετικό στόχο το επονομαζόμενο αντιγόνο. Η τεράστια ποικιλότητα των αντισωμάτων επιτρέπει το ανοσοποιητικό να αναγνωρίζει μια εξίσου μεγάλη ποικιλία αντιγόνων. Ο τεράστιος και ποικιλόμορφος πληθυσμός των αντισωμάτων παράγεται από τυχαίους συνδυασμούς μια ομάδας γονιδίων που κωδικοποιούν διαφορετικές περιοχές πρόσδεσης αντιγόνου σε συνδυασμό με τις τυχαίες μεταλλάξεις αυτών των περιοχών στα γονίδια αντισωμάτων οι οποίες προκαλούν μεγαλύτερη ποικιλία. Τα γονίδια των αντισωμάτων επανοργανώνονται στην διαδικασία που ονομάζεται αλλαγή τάξης που αλλάζει την γενετική βάση των βαριών αλυσίδων δημιουργώντας ένα διαφορετικό ισότοπο του αντισώματος το οποίο όμως διατηρεί την μεταβλητή περιοχή συγκεκριμένη για ένα συγκεκριμένο αντιγόνο. Αυτό επιτρέπει ένα αντίσωμα να χρησιμοποιείται από διαφορετικά τμήματα του ανοσοποιητικού.

Μορφές[Επεξεργασία | επεξεργασία κώδικα]

Η επιφανειακή ανοσοσφαιρίνη (Ιg) προσκολλάται στη μεμβράνη του Β κυττάρου μέσω της διαμεμβρανικής της περιοχής, ενώ παράλληλα αντισώματα είναι το αποτέλεσμα της έκκρισης της Ιg και στερούνται της διαμεμβρανικής περιοχής τα οποία και μπορούν να διοχετευτούν στην κυκλοφορία και στις σωματικές κοιλότητες. Ως αποτέλεσμα η επιφανειακή Ιg και τα αντισώματα είναι ταυτόσημα με εξαίρεση τη διαμεμβρανική περιοχή. Οπότε εκλαμβάνονται ως δύο διαφορετικές μορφές αντισωμάτων: μια διαλυτή και μια μεμβρανο-συνδετή.

Η μεμβρανο-συνδετή μορφή ενός αντισώματος μπορεί να ονομάζεται και επιφανειακή ανοσοσφαιρίνη η μεμβρανική ανοσοσφαιρίνη. Είναι κομμάτι του Υποδοχέα κυττάρου Β {B cell receptor (BCR)} ο οποίος επιτρέπει ένα κύτταρο Β να εντοπίζει πότε ένα συγκεκριμένο αντιγόνο βρίσκεται στο σώμα και πυροδοτεί την ενεργοποίηση του Β κυττάρου. Ο BCR αποτελείται από επιφανειακά IgD ή IgM αντισώματα και συσχετιζόμενα ΙgA και IgB ετεροδιμερή που είναι ικανά για την μεταφορά σήματος. Ένα τυπικό ανθρώπινο Β κύτταρο κάθε στιγμή έχει 50000 με 100000 αντισώματα προσδεδεμένα στην επιφάνεια του. Κατόπιν της δέσμευσης του αντιγόνου, δημιουργούν συμπλέγματα που μπορούν να υπερβούν το ένα μικρόμετρο σε διάμετρο σε τμήματα λιπιδίων που απομονώνουν τους BCR από τους περισσότερους από τους υπόλοιπους υποδοχείς σημάτων του κυττάρου. Αυτά τα συμπλέγματα μπορεί να βελτιώνουν την αποτελεσματικότητα της κυτταρικής ανοσολογικής απάντησης. Στον άνθρωπο, η επιφάνεια των κυττάρων είναι γυμνή γύρω από τους BCR για αρκετά χιλιάδες ångstroms το οποίο απομονώνει επιπλέον τους BCR από ανταγωνιστικές επιδράσεις.

Ισότοπα[Επεξεργασία | επεξεργασία κώδικα]

Τα [[αντιβιοτικά υπάρχουν σε διάφορες ποικιλίες γνωστές ως ισότοπα ή τάξεις. Στα θηλαστικά με πλακούντα υπάρχουν πέντε ισότοπα αντισωμάτων γνωστά ως IgA, IgD, IgE, IgG και IgM. Το καθένα ονομάζεται με μια πρόθεση Ig η οποία σημαίνει ανοσοσφαιρίνη ένα άλλο όνομα για το αντίσωμα και διαφέρουν ως προς τις βιολογικές ιδιότητές τους, τις λειτουργικές τους θέσεις και την ικανότητα να αντιμετωπίζουν διάφορα αντιγόνα.
Το ισότοπο αντίσωμα ενός Β κυττάρου αλλάζει κατά τη διάρκεια της κυτταρικής εξέλιξης και ενεργοποίησης. Ανώριμα Β κύτταρα τα οποία δεν έχουν ποτέ πριν εκτεθεί σε ένα αντιγόνο είναι γνωστά ως παρθενικά Β κύτταρα και εκφράζουν μόνο το IgM ισότοπο σε μια μορφή δεσμευμένη σε κύτταρο. Τα Β κύτταρα ξεκινούν να εκφράζουν μαζί και τα IgM και τα IgD όταν φθάσουν στην ώριμη μορφή -η συνέκφραση των δύο αυτών ανοσοσφαιρινικών ισοτόπων χαρακτηρίζει το Β κύτταρο ώριμο και έτοιμο να ανταποκριθεί στο αντιγόνο. Την ενεργοποίηση των Β κυττάρων ακολουθεί η σύνδεση του αντισώματος που είναι προσδεδεμένο στο κύτταρο με ένα αντιγόνο προκαλώντας τη διαίρεση και διαφοροποίηση του κυττάρου σε ένα κύτταρο παραγωγής αντισωμάτων που ονομάζεται πλασματοκύτταρο. Σε αυτήν την ενεργοποιημένη μορφή το Β κύτταρο ξεκινά την παραγωγή αντισωμάτων σε εγκρινόμενη κυρίως μορφή. Μερικά θυγατρικά κύτταρα υφίστανται αλλαγή ισότυπου ένα μηχανισμό που προκαλεί την παραγωγή αντισωμάτων σε αλλαγή από IgM ή IgD σε άλλα ισότοπα αντισωμάτων , IgE, IgA, IgG τα οποία έχουν καθορισμένους ρόλους στο ανοσοποιητικό σύστημα.

Δομή[Επεξεργασία | επεξεργασία κώδικα]

Τα αντισώματα είναι βαριές (150kDa) σφαιρικές πρωτεΐνες του πλάσματος. Έχουν υδατανθρακικές αλυσίδες ενωμένες σε κάποια κατάλοιπα αμινοξέων τους. Με άλλα λόγια τα αντισώματα είναι γλυκοπρωτεΐνες. Η βασική λειτουργική μονάδα είναι ένα μονομερές ανοσοσφαιρίνης΄ τα εκκρινόμενα αντισώματα μπορούν να είναι και διμερή, τετραμερή και πενταμερή. Τα μεταβλητά μέρη του αντισώματος είναι η περιοχή V ενώ τα σταθερά η περιοχή C.

Ανοσοσφαιρινικές περιοχές[Επεξεργασία | επεξεργασία κώδικα]

Το Ig μονομερές είναι ένα Υ σχήματος μόριο το οποίο αποτελείται από τέσσερις πολυπεπτιδικές αλυσίδες: δύο πανομοιότυπες βαριές αλυσίδες και δύο πανομοιότυπες ελαφρές αλυσίδες ενωμένες με δισουλφιδικούς δεσμούς. Κάθε αλυσίδα αποτελείται από δομικές περιοχές που ονομάζονται ανοσοσφαιρινικές περιοχές. Αυτές οι περιοχές αποτελούνται από 70 έως 100 αμινοξέα και κατηγοριοποιούνται σε διαφορετικές κατηγορίες ανάλογα με το μέγεθος και την λειτουργία. Έχουν μια χαρακτηριστική ανοσοσφαιρινική θηλιά στην οποία δύο βήτα φύλλα δημιουργούν ένα σαντουιτς το οποίο συντηρείται από αλληλεπιδράσεις ανάμεσα σε συντηρημένα κατάλοιπα κυστεΐνης και άλλα φορτισμένα αμινοξέα.

Βαριά αλυσίδα[Επεξεργασία | επεξεργασία κώδικα]

Υπάρχουν πέντε τύποι βαριών αλυσίδων στις Ig των θηλαστικών ονομαζόμενες από τα ελληνικά γράμματα: α,δ,ε,γ,μ. Ο τύπος της βαριάς αλυσίδας καθορίζει την τάξη του αντισώματος: αυτές οι αλυσίδες βρίσκονται στα IgA, IgD, IgE, IgG, and IgM αντίστοιχα. Ξεχωριστές βαριές αλυσίδες διαφέρουν σε μέγεθος και σύσταση
Κάθε βαριά αλυσίδα έχει δύο περιοχές την σταθερή περιοχή και την μεταβλητή περιοχή. Η σταθερή περιοχή είναι πανομοιότυπες σε όλα τα αντισώματα του ίδιου ισότυπου αλλά διαφέρει σε αντισώματα διαφορετικού ισότυπου. Οι βαριές αλυσίδες γ,α και δ έχουν μια σταθερή περιοχή αποτελούμενη από τρεις εν σειρά Ig περιοχές και μια συνδετική περιοχή για επιπλέον ευλυγισία. Οι βαριές αλυσίδες μ και ε έχουν μια σταθερή περιοχή αποτελείται από τέσσερις ανοσοσφαιρινικές περιοχές. Η μεταβλητή περιοχή της βαριάς αλυσίδας διαφέρει στα αντισώματα που παράγονται από διαφορετικά Β κύτταρα αλλά είναι τα ίδια για όλα τα αντισώματα που παράγονται από ένα Β κλώνο. Η μεταβλητή περιοχή της κάθε βαριάς αλυσίδας είναι περίπου 110 αμινοξέα μακριά και συνίσταται από μία μονή Ig περιοχή.

Ελαφριά αλυσίδα[Επεξεργασία | επεξεργασία κώδικα]

Στα θηλαστικά υπάρχουν δύο είδη ανοσοσφαιρινικών ελαφρών αλυσίδων οι οποίες ονομάζονται λάμδα και κάπα. Μια ελαφρά αλυσίδα έχει δύο διαδοχικές περιοχές: μία σταθερή και μία μεταβλητή περιοχή. Το μέσο μέγεθος μιας ελαφριάς αλυσίδας κυμαίνεται ανάμεσα σε 211 με 217 αμινοξέα. Κάθε αντίσωμα περιέχει δύο ελαφριές αλυσίδες που είναι πάντα πανομοιότυπες.

CDRs, Fv, Fab και Fc περιοχές[Επεξεργασία | επεξεργασία κώδικα]

Μερικά τμήματα του αντισώματος έχουν μοναδικές λειτουργίες. ΟΙ βραχίονες του Υ για παράδειγμα περιέχουν τις περιοχές που μπορούν να δεσμεύσουν δύο αντιγόνα και ως αποτέλεσμα να αναγνωρίσουν συγκεκριμένα ξένα αντικείμενα. Η περιοχή αυτή του αντισώματος ονομάζεται Fab (Fragment antigen binding) περιοχή. Δομείται από μια σταθερή και μία μεταβλητή περιοχή από κάθε μια βαριά και ελαφριά αλυσίδα του αντισώματος. Η περιοχή πρόσδεσης του αντιγόνου έχει σχήμα στο αμινοτελικό άκρο του μονομερούς αντισώματος που καθορίζεται από μεταβλητές περιοχές της βαριάς και τις ελαφριάς αλυσίδας. Η μεταβλητή περιοχή αναφέρεται επίσης και ως FV περιοχή και είναι η πιο σημαντική στην περιοχή πρόσδεσης του αντιγόνου. Πιο συγκεκριμένα ποικίλες θηλιές από β-έλικες τρεις σε κάθε βαριά και ελαφριά αλυσίδα είναι υπεύθυνες για την δέσμευση του αντιγόνου. Αυτές οι θηλιές αναφέρονται ως οι περιοχές καθορισμού της συμπληρωματικότητας(CDRs) Οι δομές αυτών των περιοχών έχουν καθοριστεί από τον Chothia και πιο πρόσφατα τον Νοrth.

Γονιδιακή έκφραση[Επεξεργασία | επεξεργασία κώδικα]

Τα γονίδια που κωδικοποιούν τα αντισώματα έχουν περίεργη αρχιτεκτονική, γεγονός που εξηγεί τη μεγάλη ποικιλία τους. Τα γονίδια των αντισωμάτων έχουν την ιδιότητα να ανασυνδυάζονται με τυχαίο τρόπο όταν το λεμφοκύτταρο Β διαφοροποιείται σε πλασματοκύτταρο με αποτέλεσμα μια τεράστια ποικιλία διαφορετικών αντισωμάτων. Υπολογίζεται ότι ο οργανισμός μπορεί να φτιάξει περισσότερα από 108 διαφορετικά αντισώματα. Έχει βρεθεί ότι υπάρχουν δύο ομάδες μεταβλητών γονιδίων, τα V και τα J, μαζί με ένα σταθερό γονίδιο C για τις ελαφριές αλυσίδες, ενώ οι βαριές έχουν μια επιπλέον ομάδα μεταβλητών γονιδίων, την D.

Ο αριθμός διαφορετικών γονιδίων που φέρει η κάθε ομάδα και η θέση της στα χρωμοσώματα εξαρτώνται από το είδος της αλυσίδας. Για τις ελαφριές αλυσίδες κ υπάρχουν 40 διαφορετικά γονιδιακά τμήματα V τα οποία βρίσκονται στη σειρά στο χρωμόσωμα 2 του ανθρώπου, ενώ τα τμήματα J είναι 5 και βρίσκονται σε σειρά κοντά στο γονίδιο C. Κάθε γονίδιο V κωδικοποιεί τα πρώτα περίπου 97 κατάλοιπα της μεταβλητής περιοχής των ελαφριών αλυσίδων και τα γονίδια J τα υπόλοιπα 13. Στις ελαφριές αλυσίδες λ υπάρχουν 30 διαφορετικά τμήματα V, 4 τμήματα J και 4 γονίδια C, σε αντίθεση με την αλυσίδα κ που έχει μόνο ένα. Τα τμήματα των ελαφριών αλυσίδων λ βρίσκονται στο χρωμόσωμα 22 του ανθρώπου. Από την άλλη, τα γονίδια που κωδικοποιούν τις βαριές αλυσίδες στον άνθρωπο βρίσκονται στο χρωμόσωμα 14. Υπάρχουν 51 διαφορετικά τμήματα V και 6 διαφορετικά τμήματα J. Ανάμεσα στα V και J βρίσκονται 27 γονιδιακά τμήματα D. Επίσης, υπάρχουν διαφορετικά γονίδια C, το κάθενα κωδικοποιεί διαφορετικού είδους βαριά αλυσίδα.

Στα εμβρυϊκά κύτταρα αυτές οι ομάδες είναι απομακρυσμένες μεταξύ τους. Όμως, κατά τη διαφοροποίηση των λεμφοκυττάρων Β, ένα τμήμα V συνδέεται τυχαία σε ένα τμήμα J και σχηματίζεται ένα πλήρες γονίδιο της μεταβλητής περιοχής VJ. Κατά τη διαδικασία της ωρίμανσης του RNA το τμήμα VJ συνδέεται με τη περιοχή C και τελικά συντίθεται μια πλήρης ελαφριά αλυσίδα. Ο ανασυνδυασμός που συμβαίνει δεν είναι τέλειος. Για παράδειγμα, ο ανασυνδυασμός μπορεί να γίνει στο κωδικόνιο 95 αντί 97 με αποτέλεσμα ακόμη μεγαλύτερη ποικιλομορφία. Στις βαριές αλυσίδες σχηματίζεται πρώτα τα τμήμα DJ, το οποίο τελικά ενώνεται στο τμήμα V. Ειδικές πολυμεράσες που δρουν χωρίς καλούπι προσθέτουν επιπλέον νουκλεοτίδια στο σημείο που ενώνονται τα τμήματα V και D. Ο ανασυνδυασμός των γονιδίων σε όλες τις αλυσίδες, ελαφριές και βαριές, γίνεται από ειδικές πρωτεΐνες που ονομάζονται RAG-1 και RAG-2, οι οποίες εκφράζονται μόνο στα ανοσοκύτταρα. Αυτές οι πρωτεΐνες αναγνωρίζουν ειδικές αλληλουχίες στο DNA κοντά στα τμήματα V, J, και D, γνωστές ως σηματοδοτικές αλληλουχίες ανασυνδυασμού (RSS), και διευκολύνουν τη διάσπαση και επανασύνδεση του DNA. Τα αντισώματα που παράγονται έχουν την ίδια αλληλουχία αμινοξέων.

Λειτουργίες[Επεξεργασία | επεξεργασία κώδικα]

Τα ενεργοποιημένα Β κύτταρα διαφοροποιούνται είτε σε πλασματοκύτταρα που εκκρίνουν διαλυτά αντισώματα είτε σε κύτταρα μνήμης που διατηρούνται στο σώμα για πολλά χρόνια μετά την έκθεση ώστε να επιτρέπουν στο ανοσοποιητικό σύστημα να θυμάται ένα αντιγόνο και να απαντά ταχύτερα σε μελλοντική έκθεση.
Στα προγεννητικά και πρώτα μετεμβρυϊκά χρόνια της ζωής η παρουσία αντισωμάτων εξασφαλίζεται από την μητέρα με παθητική ανοσία. Η πρώτη ενδογενής παραγωγή αντισωμάτων διαφέρει για τα διαφορετικά είδη αντισωμάτων και συνήθως εμφανίζεται στα πρώτα χρόνια της ζωής. Από την στιγμή που τα αντισώματα ξεκινήσουν να υπάρχουν ελεύθερα στο αίμα θεωρούνται μέρος της χυμικής ανοσίας. Τα αντισώματα της κυκλοφορίας παράγονται από κλωνικά Β κύτταρα τα οποία συγκεκριμένα απαντούν σε ένα αντιγόνο. Τα αντισώματα συνεισφέρουν στην ανοσία με τρεις τρόπους: εμποδίζουν τα αντιγόνα να εισέρχονται και να τραυματίζουν τα κύτταρα με το να προσδένονται σε αυτά, ρυθμίζουν την απομάκρυνση των παθογόνων παραγόντων με τα μακροφάγα και άλλα εξειδικευμένα κύτταρα και ενεργοποιούν την καταστροφή των παθογόνων παραγόντων ρυθμίζοντας άλλες ανοσολογκές αποκρίσεις όπως η οδός του συμπληρώματος.

Η Οδός του συμπληρώματος[Επεξεργασία | επεξεργασία κώδικα]

Τα αντισώματα που προσδένουν στην επιφάνεια τους αντιγόνα προσελκύουν το πρώτο συστατικό του καταρράκτη του συμπληρώματος με τον Fc υποδοχέα και εκκινούν την ενεργοποίηση της κλασικής οδού του συμπληρώματος. Το αποτέλεσμα είναι ο θάνατος των βακτηρίων με δύο τρόπους. Πρώτα η πρόσδεση του αντισώματος με τα μόρια του συμπληρώματος σημαδεύει το μικρόβιο για πέψη από τα φαγοκύτταρα μια διαδικασία που ονομάζεται οψωνοποίηση. Δεύτερον μερικά συστατικά του συμπληρώματος σχηματίζουν μια μορφή που επιτίθεται στην μεμβράνη και βοηθά τα αντισώματα να σκοτώσουν τα βακτήρια απευθείας.

Ενεργοποίηση των κυττάρων[Επεξεργασία | επεξεργασία κώδικα]

Για να αντιμετωπίσουν τα μικρόβια που αναπαράγονται έξω από τα κύτταρα τα αντισώματα προσδένονται στα παθογόνα και συνδέονται μεταξύ τους με αποτέλεσμα να τα απενεργοποιούν. Από την στιγμή που ένα αντίσωμα έχει περισσότερες της μιας θέσεις δέσμευσης αντιγόνου μπορεί να φέρει πανομοιότυπα αντιγόνα στην επιφάνεια του. Με την παρουσίαση του αντιγόνου τα αντισώματα ρυθμίζουν την ενεργοποίηση παραγόντων εναντίον αυτών των αντιγόνων σε κύτταρα που αναγνωρίζουν την Fc περιοχή του.
Αυτά τα κύτταρα αναγνωρίζουν παρουσιασμένα μικρόβια τα οποία αντιδρούν με τον παράγοντα Fc των IgA, IgG και IgE αντισωμάτων. Η σύνδεση ενός αντισώματος με τον Fc υποδοχέα σε ένα συγκεκριμένο αντιγόνο θα ενεργοποιήσει το σήμα της φαγοκυττάρωσης του αντιγόνου από τα φαγοκύτταρα, την απελευθέρωση κοκκίων από τα μαστοκύτταρα και τα ουδετερόφιλα και την απελευθέρωση κυτταροκινών και κυτταροτοξικών ουσιών από τα ΝΚ κύτταρα. Αυτά θα οδηγήσουν στην ολοκληρωτική καταστροφή του μικροβίου. Οι Fc παράγοντες έχουν ειδίκευση αναφορικά με το ισότοπο επιτρέποντας μόνο την ενεργοποίηση των κατάλληλων μηχανισμών του ανοσοποιητικού για ένα συγκεκριμένο αντιγόνο.

Φυσικά αντισώματα[Επεξεργασία | επεξεργασία κώδικα]

Οι άνθρωποι και τα ανώτερα πρωτεύοντα θηλαστικά παράγουν επίσης φυσικά αντισώματα τα οποία είναι παρόντα στον ορό πριν από μια ιική μόλυνση. Φυσικά αντισώματα χαρακτηρίζονται τα αντισώματα τα οποία έχουν παραχθεί χωρίς μια προηγούμενη λοίμωξη, εμβολιασμό η οποιαδήποτε άλλη έκθεση σε ξένο αντιγόνο η παθητική ανοσία. Αυτά τα αντισώματα μπορούν να ενεργοποιήσουν την κλασική οδό του συμπληρώματος οδηγώντας σε λύση των γνωστών ιικών μορίων πολύ πριν του ανοσοποιητικό σύστημα αναπτύξει την καθιερωμένη απάντηση. Πολλά φυσικά αντισώματα στρέφονται ενάντια στον δισακχαρίτη γαλακτόζη ο οποίος βρίσκεται σε γλυκοπρωτεΐνες στην επιφάνεια κυττάρων και παράγεται σε απάντηση της παραγωγής γλυκόζης από βακτήρια που βρίσκονται στα ανθρώπινα σπλάχνα. Η απόρριψη ενός μεταμοσχευμένου οργάνου θεωρείται ότι είναι ως ένα μέρος το αποτέλεσμα των φυσικών αντισωμάτων που κυκλοφορούν στον ορό του υποδοχέα τα οποία συνδέονται με αντιγόνα γαλακτόζης του δότη.

Πηγή[Επεξεργασία | επεξεργασία κώδικα]

  • J.M. Berg, J.L. Tymoczko και L. Stryer. «Το ανοσοποιητικό σύστημα». Βιοχημεία. Πανεπιστημιακές Εκδόσεις Κρήτης. σελ. 1046-1048. ISBN 960-524-191-9. 
Στο λήμμα αυτό έχει ενσωματωθεί κείμενο από το λήμμα Antibody της Αγγλόγλωσσης Βικιπαίδειας, η οποία διανέμεται υπό την GNU FDL και την CC-BY-SA 3.0. (ιστορικό/συντάκτες).