Κβαντικός υπολογιστής: Διαφορά μεταξύ των αναθεωρήσεων

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Περιεχόμενο που διαγράφηκε Περιεχόμενο που προστέθηκε
Χωρίς σύνοψη επεξεργασίας
JohnKomis (συζήτηση | συνεισφορές)
Χωρίς σύνοψη επεξεργασίας
Γραμμή 36: Γραμμή 36:
Τελικά, κατά τον τερματισμό του αλγορίθμου, το αποτέλεσμα πρέπει να διαβαστεί. Στην περίπτωση του κλασικού υπολογιστή έχουμε δείγμα από την κατανομή πιθανοτήτων πάνω σε έναν καταχωριτή τριών bit για να πάρει μια οριστική ακολουθία τρειών bit, ας πούμε 000. Στην κβαντική μηχανική μετράμε τη καταστάση τρειών qubit, η οποία είναι ισοδύναμη με την κατάρευση της κβαντικής κατάστασης σε κανονική κατανομή (με τους συντελεστές στην κλασική κατάσταση να είναι τετραγωνικά μεγέθη των συντελεστών για την κβαντική κατάσταση, όπως περιγράφικε παραπάνω), ακολουθούμενη από δειγματοληψία από αυτήν την κατανομή. Σημειώστε ότι αυτό καταστρέφει την κανονική κβαντική κατάσταση. Πολλοί αλγόριθμοι θα δώσουν την σωστή απάντηση με κάποια πιθανότητα. Οστόσο, από την επαναλαμβανόμενη αρχικοποίηση, το να τρέχουμε και να κάνουμε μετρήσεις στον κβαντικό υπολογιστή, αυξάνει την πιθανότητα να πάρουμε την σωστή απάντηση.
Τελικά, κατά τον τερματισμό του αλγορίθμου, το αποτέλεσμα πρέπει να διαβαστεί. Στην περίπτωση του κλασικού υπολογιστή έχουμε δείγμα από την κατανομή πιθανοτήτων πάνω σε έναν καταχωριτή τριών bit για να πάρει μια οριστική ακολουθία τρειών bit, ας πούμε 000. Στην κβαντική μηχανική μετράμε τη καταστάση τρειών qubit, η οποία είναι ισοδύναμη με την κατάρευση της κβαντικής κατάστασης σε κανονική κατανομή (με τους συντελεστές στην κλασική κατάσταση να είναι τετραγωνικά μεγέθη των συντελεστών για την κβαντική κατάσταση, όπως περιγράφικε παραπάνω), ακολουθούμενη από δειγματοληψία από αυτήν την κατανομή. Σημειώστε ότι αυτό καταστρέφει την κανονική κβαντική κατάσταση. Πολλοί αλγόριθμοι θα δώσουν την σωστή απάντηση με κάποια πιθανότητα. Οστόσο, από την επαναλαμβανόμενη αρχικοποίηση, το να τρέχουμε και να κάνουμε μετρήσεις στον κβαντικό υπολογιστή, αυξάνει την πιθανότητα να πάρουμε την σωστή απάντηση.


==Αναφορές==
{{Reflist|30em}}

==Βιβλιογραφία==
*{{Cite book | author= [[Michael Nielsen|Nielsen, Michael]] and [[Isaac L. Chuang|Chuang, Isaac]] |title=Quantum Computation and Quantum Information |publisher=Cambridge University Press |location=Cambridge |year=2000 |isbn=0-521-63503-9 |oclc= 174527496 |url=http://books.google.com/books?id=aai-P4V9GJ8C&printsec=frontcover}}

===Γενικές Αναφορές===
<!-- These need to be inlined -->
*{{Cite journal | author=[[Derek Abbott]], [[Charles R. Doering]], [[Carlton M. Caves]], [[Daniel Lidar|Daniel M. Lidar]], [[Howard Brandt|Howard E. Brandt]], [[Alexander R. Hamilton]], [[David K. Ferry]], [[Julio Gea-Banacloche]], [[Sergey M. Bezrukov]], and [[Laszlo B. Kish]] |title=Dreams versus Reality: Plenary Debate Session on Quantum Computing |journal=Quantum Information Processing |year=2003 |volume=2 |issue=6 |pages=449–472 |doi=10.1023/B:QINP.0000042203.24782.9a | arxiv=quant-ph/0310130 |id={{hdl|2027.42/45526}}}}
*David P. DiVincenzo (2000). "The Physical Implementation of Quantum Computation". ''Experimental Proposals for Quantum Computation''. {{arxiv|quant-ph/0002077}}
*{{Cite journal | author=David P. DiVincenzo |title=Quantum Computation |journal=Science |year=1995 |volume=270 |issue=5234 |pages=255–261 |doi= 10.1126/science.270.5234.255 |bibcode = 1995Sci...270..255D }} Table 1 lists switching and dephasing times for various systems.
*{{Cite journal | author=[[Richard Feynman]] |title=Simulating physics with computers |journal=International Journal of Theoretical Physics |volume=21 |page=467 |year=1982 |doi = 10.1007/BF02650179 |bibcode = 1982IJTP...21..467F | issue=6–7 }}
*{{Cite book | author=Gregg Jaeger |title=Quantum Information: An Overview |publisher=Springer |location=Berlin |year=2006 |isbn=0-387-35725-4 |oclc=255569451}}
*{{Cite book | author= Stephanie Frank Singer |title=Linearity, Symmetry, and Prediction in the Hydrogen Atom |publisher=Springer |location=New York |year=2005 |isbn=0-387-24637-1 |oclc= 253709076}}
*{{Cite book | author= Giuliano Benenti |title=Principles of Quantum Computation and Information Volume 1 | publisher=World Scientific |location=New Jersey |year=2004 |isbn=981-238-830-3 |oclc= 179950736}}
*Sam Lomonaco [http://www.csee.umbc.edu/~lomonaco/Lectures.html#OxfordLectures Four Lectures on Quantum Computing given at Oxford University in July 2006]
*C. Adami, N.J. Cerf. (1998). "Quantum computation with linear optics". {{arxiv|quant-ph/9806048v1}}.

*<cite id=Joachim>{{Cite book
|author = Joachim Stolze,
|coauthors = Dieter Suter,
|year = 2004
|title = Quantum Computing
|publisher = Wiley-VCH
|isbn = 3-527-40438-4
}}</cite>

*<cite id=Ian>{{cite web
|author = Ian Mitchell,
|year = 1998
|title = Computing Power into the 21st Century: Moore's Law and Beyond
|url = http://citeseer.ist.psu.edu/mitchell98computing.html
}}</cite>

*<cite id=Rolf>{{cite web
|author = [[Rolf Landauer]],
|year = 1961
|title = Irreversibility and heat generation in the computing process
|url = http://www.research.ibm.com/journal/rd/053/ibmrd0503C.pdf
}}</cite>

*<cite id=Moore>{{Cite book
|author = [[Gordon E. Moore]]
|year = 1965
|title = Cramming more components onto integrated circuits
|journal = Electronics Magazine
}}</cite>

*<cite id=R.w.>{{Cite book
|author = R.W. Keyes,
|year = 1988
|title = Miniaturization of electronics and its limits
|journal = "IBM Journal of Research and Development"
}}</cite>

*<cite id=M.>{{cite web
|author = [[Michael Nielsen|M. A. Nielsen]],
|coauthors = E. Knill, ; [[Raymond Laflamme|R. Laflamme]],
|year =
|title = Complete Quantum Teleportation By Nuclear Magnetic Resonance
|url = http://citeseer.ist.psu.edu/595490.html
}}</cite>

*<cite id=Lieven>{{Cite book
|author = Lieven M.K. Vandersypen,
|coauthors = Constantino S. Yannoni, ; Isaac L. Chuang,
|year = 2000
|title = Liquid state NMR Quantum Computing
}}</cite>

*<cite id=Imai>{{Cite book
|author = Imai Hiroshi,
|coauthors = Hayashi Masahito,
|year = 2006
|title = Quantum Computation and Information
|publisher = Springer
|isbn = 3-540-33132-8
|location = Berlin
}}</cite>

*<cite id=Andre>{{cite web
|author = Andre Berthiaume,
|year = 1997
|title = Quantum Computation
|url = http://citeseer.ist.psu.edu/article/berthiaume97quantum.html
}}</cite>

*<cite id=David>{{cite web
|author = Daniel R. Simon,
|year = 1994
|title = On the Power of Quantum Computation
|publisher = Institute of Electrical and Electronic Engineers Computer Society Press
|url = http://citeseer.ist.psu.edu/simon94power.html
}}</cite>

*<cite id=rub>{{cite web
|title = Seminar Post Quantum Cryptology
|publisher = Chair for communication security at the Ruhr-University Bochum
|url = http://www.crypto.rub.de/its_seminar_ss08.html
}}</cite>

*<cite id=Sanders>{{cite web
|author = Laura Sanders,
|year = 2009
|title = First programmable quantum computer created
|url = http://www.sciencenews.org/view/generic/id/49951/title/First_programmable_quantum_computer_created
}}</cite>
*<cite id=sb>{{cite web
|title = New trends in quantum computation
|url = http://insti.physics.sunysb.edu/itp/conf/simons-qcomputation2/
}}
</cite>

==Εξωτερικές Αναφορές==
*[[Stanford Encyclopedia of Philosophy]]: "[http://plato.stanford.edu/entries/qt-quantcomp/ Quantum Computing]" by Amit Hagar.
*[http://www.quantiki.org/ Quantiki] – Wiki and portal with free-content related to quantum information science.
*[http://www.scottaaronson.com/blog/ Scott Aaronson's blog]<!--Comes highly recommended by Tim Gowers-->, which features informative and critical commentary on developments in the field<!--and which delivers regular smackdowns of D-Wave rubbish-->
;Lectures
*[https://www.coursera.org/course/qcomp Quantum Mechanics and Quantum Computation] — [[Coursera]] course by [[Umesh Vazirani]]
*[http://www.youtube.com/playlist?list=PL1826E60FD05B44E4 Quantum computing for the determined] — 22 video lectures by [[Michael Nielsen]]
*[http://www.quiprocone.org/Protected/DD_lectures.htm Video Lectures] by [[David Deutsch]]
*[http://www.quantware.ups-tlse.fr/IHP2006/ Lectures at the Institut Henri Poincaré (slides and videos)]
*[http://nanohub.org/resources/4778 Online lecture on An Introduction to Quantum Computing, Edward Gerjuoy (2008)]
*[http://www.youtube.com/watch?v=dWcT_qrBN_w Quantum Computing research by Mikko Möttönen at Aalto University (video)]





Έκδοση από την 18:38, 4 Ιουνίου 2013

Κβαντικός υπολογιστής ονομάζεται οποιαδήποτε υπολογιστική συσκευή που κάνει χρήση χαρακτηριστικών κβαντομηχανικών ιδιοτήτων, όπως η αρχή της υπέρθεσης και της διεμπλοκής καταστάσεων για να πραγματοποιεί επεξεργασία δεδομένων. Σε έναν κλασικό υπολογιστή, στοιχειώδης μονάδα πληροφορίας πληροφορίας είναι το bit, ενώ σε έναν κβαντικό υπολογιστή το qubit. Η βασική αρχή της κβαντικής υπολογιστικής επιστήμης είναι το γεγονός ότι οι κβαντομηχανικές ιδιότητες της ύλης μπορούν να χρησιμοποιηθούν για την αναπαράσταση και τη δόμηση δεδομένων, καθώς και το γεγονός ότι μπορούν να επινοηθούν και να κατασκευαστούν μηχανισμοί βασισμένοι στην κβαντομηχανική για την επεξεργασία αυτών των δεδομένων.

Η κβαντική υπολογιστική επιστήμη βρίσκεται ακόμα σε πειραματικό στάδιο, ωστόσο τα αποτελέσματα των πειραμάτων που έχουν πραγματοποιηθεί σε αυτό το πεδίο (με μικρό αριθμό qubits) είναι ενθαρρυντικά.

Μεγάλης κλίμακας κβαντικοί υπολογιστές θα μπορούν να λύσουν προβλήματα πολύ πιο γρήγορα από τους κλασικούς υπολογιστές χρησιμοποιώντας τους καλύτερους μέχρι τώρα γνωστούς αλγόριθμους, όπως η παραγοντοποίηση μεγάλων αριθμών χρησιμοποιώντας τον αλγόριθμο του Shor ή η προσομοίωση μεγάλων συστημάτων. Αν δοθούν αρκετοί υπολογιστικοί πόροι σε έναν κλασικό υπολογιστή, μπορεί να προσομοιώσει οποιοδήποτε κβαντικό αλγόριθμο. Ωστόσο η υπολογιστική ισχύ 500 qubits, για παράδειγμα θα ήταν ήδη πολύ μεγάλη για να αναπαρασταθεί σε έναν κλασικό υπολογιστή γιατί θα χρειαζόταν να αποθηκευτούν 2500 τιμές. ( Ένα terabyte πληροφορίας μπορεί να αποθηκεύσει 243 διακριτές τιμές )


Βασικές αρχές

Η μνήμη ενός κλασικού υπολογιστή αποτελείται από bits τα οποία μπορούν να αναπαραστήσουν την τιμή 1 ή 0. Ένα qubit μπορεί να αναπαραστήσει την τιμή 1, 0 ή οποιαδήποτε υπέρθεση αυτών των 2. Δύο qubits μπορούν να αναπαραστήσουν οποιαδήποτε υπέρθεση τεσσάρων δυνατών καταστάσεων, 3 qubits οποιαδήποτε υπέρθεση 8 καταστάσεων. Γενικά ένας κβαντικός υπολογιστής με n qubits μπορεί να βρίσκεται σε αυθαίρετη υπέρθεση των εως 2n δυνατών καταστάσεων ταυτόχρονα, ενώ ένας κλασικός υπολογιστής μπορεί να βρίσκετε μόνο σε μια από αυτές τις καταστάσεις κάθε στιγμή. Ο κβαντικός υπολογιστής λειτουργεί θέτοντας τα qubits σε μια ελεγχόμενη αρχική κατάσταση που αναπαριστά το αρχικό πρόβλημα και χειρίζεται τα qubits χρησιμοποιώντας λογικές κβαντικές πύλες.Η αλληλουχία των πυλών που χρησιμοποιούνται ονομάζεται κβαντικός αλγόριθμος.

Ένα παράδειγμα εφαρμογής των qubits σε έναν κβαντικό υπολογιστή θα ξεκινούσε με την χρήση σωματιδίων με δύο καταστάσεις περιστροφής (spin): πάνω και κάτω ( τυπικά γράφεται και , ή και ). Στην πραγματικότητα οποιοδήποτε σύστημα έχει μια ποσότητα Α που μπορεί να παρατηρηθεί, η οποία διατηρείται με την εξέλιξη του χρόνο και είναι τέτοια ώστε η Α να έχει τουλάχιστον δύο διακριτές και επαρκώς κατανεμημένες διαδοχικές ιδιοτιμές, είναι κατάλληλο για να υλοποιήσει ένα qubit. Αυτό συμβαίνει επειδή ένα τέτοιο σύστημα μπορεί να χαρτογραφηθεί πάνω σε ένα αποτελεσματικό σύστημα με περιστροφή 1/2 (spin-1/2).


Σύγκριση bits και qubits

Ένας υπολογιστής με έναν αριθμό qubits είναι θεμελιωδώς διαφορετικός από ένα κλασικό υπολογιστή με τον ίδιο αριθμό bits. Για παράδειγμα για να αναπαραστήσουμε την κατάσταση ενός συστήματος με n-qubits σε έναν κλασικό υπολογιστή χρειάζεται να αποθηκεύσουμε 2n μιγαδικούς συντελεστές. Το γεγονός αυτό δείχνει ότι τα qubits μπορούν να αποθηκεύσουν εκθετικά περισσότερη πληροφορία από τα κλασικά bits, δεν πρέπει να παραβλέψουμε όμως το ότι τα qubits είναι μόνο μια πιθανολογική υπέρθεση όλων των πιθανών καταστάσεων τους. Αυτό σημαίνει ότι όταν μετρήσουμε την τελική κατάσταση των qubits θα βρίσκονται μόνο σε έναν από τους πιθανούς σχηματισμούς που βρίσκονταν πριν τη μέτρηση. Είναι λάθος να σκεφτόμαστε ότι τα qubits βρίσκονταν σε μία συγκεκριμένη κατάσταση πριν την μέτρηση εφόσον το γεγονός ότι ήταν σε μια υπέρθεση καταστάσεων πριν την μέτρηση επηρεάζει τα πιθανά αποτελέσματα του υπολογισμού.

Για παράδειγμα φανταστείτε έναν κλασικό υπολογιστή που λειτουργεί πάνω σε έναν καταχωρητή με 3 [[bit]s. Η κατάσταση του υπολογιστή σε οποιαδήποτε στιγμή είναι μια πιθανότητα κατανεμημένη σε 23=8 διαφορετικές 3-bitες ακολουθίες: 000, 001, 010, 011, 100, 101, 110, 111. Αν είναι ντετερμινιστικός υπολογιστής, τότε θα βρίσκεται σε ακριβώς μια από αυτές τις καταστάσεις με πιθανότητα 1. Ωστόσο αν είναι πιθανολογικός υπολογιστής, υπάρχει πιθανότητα να βρίσκετε σε μια από μια πληθώρα καταστάσεων. Μπορούμε να περιγράψουμε αυτή την πιθανολογική κατάσταση με οχτώ μη αρνητικούς αριθμούς A,B,C,D,E,F,G,H (όπου Α = η πιθανότητα ο υπολογιστής να βρίσκεται στην κατάσταση 000, B = η πιθανότητα να βρίσκεται στην κατάσταση 001, κλπ.). Το άθροισμα αυτών των πιθανοτήτων είναι 1.

Η κατάσταση ενός 3-bit-ου κβαντικού υπολογιστή περιγράφεται από ένα διάνυσμα με οχτώ διαστάσεις (a,b,c,d,e,f,g,h), που ονομάζεται ket. Ωστόσο, αντί το άθροισμα τους να είναι 1, το άθροισμα των τετραγώνων των συντελεστών, |a|2+|b|2+...+|h|2, πρέπει να είναι 1. Επίσης οι συντελεστές μπορούν να έχουν σύνθετες τιμές. Το απόλυτο τετράγωνο των συντελεστών υποδηλώνει το πλάτος πιθανότητας των δοθέντων καταστάσεων, η φάση μεταξύ οποιονδήποτε δύο συντελεστών (καταστάσεις) αναπαριστά μια βαρυσήμαντη παράμετρο, η οποία αναπαριστά μια θεμελιώδη διαφορά μεταξύ των κβαντικών υπολογιστών και των πιθανολογικών κλασικών υπολογιστών.

Αν μετρήσετε τα τρία [[qubit]s, θα δείτε μια ακολουθία τριών bits. Η πιθανότητα μέτρησης μιας δοθείσας ακολουθίας ισούται με το τετράγωνο αυτής της ακολουθίας συντελεστή (για παράδειγμα η πιθανότητα μέτρησης 000 = |a|2, η πιθανότητα μέτρησης 001 = |b|2 κλπ.). Έτσι, η μέτρηση μιας κβαντικής κατάστασης που περιγράφεται από σύνθετους συντελεστές (a,b,...,h) δίνει την κλασική κατανομή πιθανότητας (|a|2, |b|2, ..., |h|2) και λέμε πως η κβαντική κατάσταση "καταρρέει" σε μια κλασική κατάσταση σαν αποτέλεσμα πραγματοποίησης μιας μέτρησης.

Σημειώστε ότι ένα διάνυσμα οκτώ διαστάσεων μπορεί να καθοριστεί σε διάφορους τρόπους ανάλογα την βάση που επιλέγουμε διάστημα. Η βάση των ακολουθιών από bit (π.χ. 000, 001, ..., 111) είναι γνωστές ως βάση υπολογισμού. Άλλες πιθανές βάσεις είναι μοναδιαία ορθογώνια διανίσματα και τα ιδιοδιανύσματα του τελεστή Pauli-x. Το νεύμα ket συνήθως χρησιμοποιήται για να κάνει την επιλογή ξεκάθαρη. Για παράδειγμα, η κατάσταση (a,b,c,d,e,f,g,h) στην βάση υπολογισμού μπορεί να γραφεί ως εξής:

+ + + + + + +
όπου, π.χ.,

Η βάση υπολογισμού ενός qubit (δύο διαστάσεων) είναι: and .

Χρησιμοποιώντας τα ιδιοδιανύσματα του τελεστή Pauli-x, ένα qubit είναι: και .

Λειτουργίες

Παρότι μια κλασική κατάσταση τριών-bit και μια κβαντική κατάσταση τριών-bit είναι διανύσματα οκτώ διαστάσεων, τα διαχειριζόμαστε διαφορετικά για κλασικούς ή κβαντικούς υπολογισμούς. Και στις δύο περιπτώσεις το σύστημα πρέπει να αρχικοποιηθεί, για παράδειγμα στην μηδενική ακολουθία, που αντιστοιχεί στο διάνυσμα . Στον κλασικό τυχαιοποιημένο υπολογισμό, το σύστημα εξελήσετε συμφωνα με την εφαρμογή στοχαστικών μητρών, οι οποίες διαφυλάσουν ότι οι πιθανότιτες θα αθρίζουν στο 1. Αντίθετα στους κβαντικούς υπολογισμούς, επιτρέπονται λειτουργίες εννιαίας μήτρας, οι οποίες είναι αποδοτικές περιστροφές. Συνεπώς, αφού οι περιστροφές μπορούν να αναιρεθούν, κάνοντας αντίσρτροφες περιστροφές, οι κβαντικοί υπολογισμοί είναι αναστρέψιμοι.

Τελικά, κατά τον τερματισμό του αλγορίθμου, το αποτέλεσμα πρέπει να διαβαστεί. Στην περίπτωση του κλασικού υπολογιστή έχουμε δείγμα από την κατανομή πιθανοτήτων πάνω σε έναν καταχωριτή τριών bit για να πάρει μια οριστική ακολουθία τρειών bit, ας πούμε 000. Στην κβαντική μηχανική μετράμε τη καταστάση τρειών qubit, η οποία είναι ισοδύναμη με την κατάρευση της κβαντικής κατάστασης σε κανονική κατανομή (με τους συντελεστές στην κλασική κατάσταση να είναι τετραγωνικά μεγέθη των συντελεστών για την κβαντική κατάσταση, όπως περιγράφικε παραπάνω), ακολουθούμενη από δειγματοληψία από αυτήν την κατανομή. Σημειώστε ότι αυτό καταστρέφει την κανονική κβαντική κατάσταση. Πολλοί αλγόριθμοι θα δώσουν την σωστή απάντηση με κάποια πιθανότητα. Οστόσο, από την επαναλαμβανόμενη αρχικοποίηση, το να τρέχουμε και να κάνουμε μετρήσεις στον κβαντικό υπολογιστή, αυξάνει την πιθανότητα να πάρουμε την σωστή απάντηση.

Αναφορές

Βιβλιογραφία

Γενικές Αναφορές

  • Gordon E. Moore (1965). Cramming more components onto integrated circuits. Electronics Magazine. 
  • R.W. Keyes, (1988). Miniaturization of electronics and its limits. "IBM Journal of Research and Development". 
  • Lieven M.K. Vandersypen, (2000). Liquid state NMR Quantum Computing.  Unknown parameter |coauthors= ignored (|author= suggested) (βοήθεια)
  • Imai Hiroshi, (2006). Quantum Computation and Information. Berlin: Springer. ISBN 3-540-33132-8.  Unknown parameter |coauthors= ignored (|author= suggested) (βοήθεια)

Εξωτερικές Αναφορές

Lectures