Ευκλείδεια γεωμετρία: Διαφορά μεταξύ των αναθεωρήσεων

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Περιεχόμενο που διαγράφηκε Περιεχόμενο που προστέθηκε
Spiros790 (συζήτηση | συνεισφορές)
Tsaki4 (συζήτηση | συνεισφορές)
Γραμμή 117: Γραμμή 117:


=== 19ος αιώνας και μη Ευκλείδεια Γεωμετρία ===
=== 19ος αιώνας και μη Ευκλείδεια Γεωμετρία ===
Στις αρχές του 19ου αιώνα,ο [[Lazare Carnot|Carnot]] και ο [[Mobius]] ανέπτυξαν συστηματικά τη χρήση των υπογεγραμμένων γωνιών και των ευθύγραμμων τμημάτων ως έναν τρόπο για την απλοποίηση και ενοποίηση των αποτελεσμάτων.
Στις αρχές του 19ου αιώνα,ο [[Νικολά καρνό|Καρνό]] και ο [[Άουγκουστ Φέρντιναντ Μέμπιους|Μέμπιους]] ανέπτυξαν συστηματικά τη χρήση των υπογεγραμμένων γωνιών και των ευθύγραμμων τμημάτων ως έναν τρόπο για την απλοποίηση και ενοποίηση των αποτελεσμάτων.


Η σημαντικότερη εξέλιξη του αιώνα στη γεωμετρία σημειώθηκε όταν,γύρω στο 1830,ο [[Janos Bolyai]] και ο [[Nikolai Ivanovich Lobachevsky]] δημοσίευσαν χωριστά έργο στην [[Μη ευκλείδεια γεωμετρία|μη Ευκλείδεια γεωμετρία]] , στην οποία το αξίωμα των παραλλήλων δεν είναι έγκυρο.Δεδομένου ότι η μη Ευκλείδεια γεωμετρία είναι αποδεδειγμένα σχετικά συνδεδεμένη με την Ευκλείδεια γεωμετρία,το αξίωμα των παραλλήλων δεν μπορεί να αποδειχθεί από τα άλλα αξιώματα.
Η σημαντικότερη εξέλιξη του αιώνα στη γεωμετρία σημειώθηκε όταν,γύρω στο 1830,ο [[Janos Bolyai]] και ο [[Νικολάι Λομπατσέφσκι]] δημοσίευσαν χωριστά έργο στην [[Μη ευκλείδεια γεωμετρία|μη Ευκλείδεια γεωμετρία]] , στην οποία το αξίωμα των παραλλήλων δεν είναι έγκυρο.Δεδομένου ότι η μη Ευκλείδεια γεωμετρία είναι αποδεδειγμένα σχετικά συνδεδεμένη με την Ευκλείδεια γεωμετρία,το αξίωμα των παραλλήλων δεν μπορεί να αποδειχθεί από τα άλλα αξιώματα.


Κατά τον 19ο αιώνα,έγινε επίσης αντιληπτό ότι τα δέκα αξιώματα και κοινές έννοιες του Ευκλείδη δεν επαρκούν για να αποδείξουν όλα τα θεωρήματα που αναφέρονται στα Στοιχεία.Για παράδειγμα,ο Ευκλείδης υπέθεσε σιωπηρά ότι κάθε γραμμή περιέχει τουλάχιστον δύο σημεία , αλλά η υπόθεση αυτή δεν μπορεί να αποδειχθεί από τα άλλα αξιώματα , και ως εκ τούτου θα πρέπει να αποτελεί από μόνης της ένα αξίωμα.Η πρώτη γεωμετρική απόδειξη στα Στοιχεία,όπως φαίνεται στο σχήμα παραπάνω,είναι ότι κάθε τμήμα γραμμής είναι μέρος ενός τριγώνου.Ο Ευκλείδης το κατασκεύασε με τον συνήθη τρόπο, σχεδιάζοντας κύκλους γύρω από τα δύο τελικά σημεία και παίρνοντας την τομή τους ως την τρίτη [[κορυφή]].Τα αξιώματά του,ωστόσο,δεν εγγυώνται ότι οι κύκλοι τέμνονται στην πραγματικότητα,επειδή δεν υποστηρίζουν τη γεωμετρική ιδιότητα της συνέχειας,η οποία από Καρτεσιανή άποψη είναι ισοδύναμη με την ιδιότητα της [[Πραγματικός αριθμός|πληρότητας]] των πραγματικών αριθμών.Ξεκινώντας από αυτό του [[Moritz Pasch]],το 1882,πολλά βελτιωμένα αξιωματικά συστήματα για γεωμετρία έχουν προταθεί,τα ποιο γνωστά από τα οποία είναι εκείνα των [[Αξιώματα Χίλμπερτ|Hilbert]],[[George Birkhoff]] και [[Tarski]].
Κατά τον 19ο αιώνα,έγινε επίσης αντιληπτό ότι τα δέκα αξιώματα και κοινές έννοιες του Ευκλείδη δεν επαρκούν για να αποδείξουν όλα τα θεωρήματα που αναφέρονται στα Στοιχεία.Για παράδειγμα,ο Ευκλείδης υπέθεσε σιωπηρά ότι κάθε γραμμή περιέχει τουλάχιστον δύο σημεία , αλλά η υπόθεση αυτή δεν μπορεί να αποδειχθεί από τα άλλα αξιώματα , και ως εκ τούτου θα πρέπει να αποτελεί από μόνης της ένα αξίωμα.Η πρώτη γεωμετρική απόδειξη στα Στοιχεία,όπως φαίνεται στο σχήμα παραπάνω,είναι ότι κάθε τμήμα γραμμής είναι μέρος ενός τριγώνου.Ο Ευκλείδης το κατασκεύασε με τον συνήθη τρόπο, σχεδιάζοντας κύκλους γύρω από τα δύο τελικά σημεία και παίρνοντας την τομή τους ως την τρίτη [[κορυφή]].Τα αξιώματά του,ωστόσο,δεν εγγυώνται ότι οι κύκλοι τέμνονται στην πραγματικότητα,επειδή δεν υποστηρίζουν τη γεωμετρική ιδιότητα της συνέχειας,η οποία από Καρτεσιανή άποψη είναι ισοδύναμη με την ιδιότητα της [[Πραγματικός αριθμός|πληρότητας]] των πραγματικών αριθμών.Ξεκινώντας από αυτό του [[Μόριτζ Πας|Μόριτς Πας]],το 1882,πολλά βελτιωμένα αξιωματικά συστήματα για γεωμετρία έχουν προταθεί,τα ποιο γνωστά από τα οποία είναι εκείνα των [[Ντάβιντ Χίλμπερτ|Χίλμπερτ]],[[George Birkhoff]] και [[Τάρσκι]].


=== 20ος αιώνας και γενική σχετικότητα ===
=== 20ος αιώνας και γενική σχετικότητα ===
Γραμμή 131: Γραμμή 131:
Ο Ευκλείδης μερικές φορές έκανε σαφή διάκριση μεταξύ των πεπερασμένων γραμμών(π.χ.αξίωμα 2) και των [[Άπειρες γραμμές|άπειρων γραμμών]](βιβλίο 1,πρόταση 12).Ωστόσο συνήθως δεν έκανε τέτοιες διακρίσεις,εκτός αν ήταν αναγκαίο.Τα αξιώματα δεν αναφέρονται ρητά στις άπειρες γραμμές,αν και για παράδειγμα μερικοί σχολιαστές ερμηνεύουν το αξίωμα 3,για την ύπαρξη κύκλου με οποιαδήποτε ακτίνα,ως υπόνοια ότι ο χώρος είναι άπειρος.
Ο Ευκλείδης μερικές φορές έκανε σαφή διάκριση μεταξύ των πεπερασμένων γραμμών(π.χ.αξίωμα 2) και των [[Άπειρες γραμμές|άπειρων γραμμών]](βιβλίο 1,πρόταση 12).Ωστόσο συνήθως δεν έκανε τέτοιες διακρίσεις,εκτός αν ήταν αναγκαίο.Τα αξιώματα δεν αναφέρονται ρητά στις άπειρες γραμμές,αν και για παράδειγμα μερικοί σχολιαστές ερμηνεύουν το αξίωμα 3,για την ύπαρξη κύκλου με οποιαδήποτε ακτίνα,ως υπόνοια ότι ο χώρος είναι άπειρος.


Η έννοια της [[Απειροελάχιστη ποσότητα|απειροελάχιστης ποσότητας]] είχε προηγουμένως συζητηθεί εκτενώς από την [[σχολή Eleatic]],αλλά κανείς δεν ήταν σε θέση να τους βάλει σε μια σταθερή λογική βάση με τα παράδοξα όπως αυτό του [[Ζήνων ο Ελεάτης|Ζήνων]] να εμφανίζονται χωρίς μια παγκόσμια αποδεκτή λύση.Ο Ευκλείδης χρησιμοποίησε τη [[μέθοδο της εξάντλησης]] αντί γι αυτήν της απειροελάχιστης απόστασης.
Η έννοια της [[Απειροελάχιστη ποσότητα|απειροελάχιστης ποσότητας]] είχε προηγουμένως συζητηθεί εκτενώς από την [[Ελέα|σχολή Ελεατική]],αλλά κανείς δεν ήταν σε θέση να τους βάλει σε μια σταθερή λογική βάση με τα παράδοξα όπως αυτό του [[Ζήνων ο Ελεάτης|Ζήνων]] να εμφανίζονται χωρίς μια παγκόσμια αποδεκτή λύση.Ο Ευκλείδης χρησιμοποίησε τη [[μέθοδο της εξάντλησης]] αντί γι αυτήν της απειροελάχιστης απόστασης.


Αργότερα σχολιαστές όπως ο [[Πρόκλος]](410–485 μ.Χ) αντιμετώπισαν πολλά ερωτήματα σχετικά με το άπειρο όπως θέματα που απαιτούσαν απόδειξη και,π.χ. ο Πρόκλος ισχυρίστηκε ότι μπορεί να αποδείξει την άπειρη διαιρετότητα μιας γραμμής,βασιζόμενος σε μια εις άτοπον απαγωγή στην οποία εξέτασε τις περιπτώσεις να αποτελείται ακόμη και από μονό αριθμό σημείων.
Αργότερα σχολιαστές όπως ο [[Πρόκλος]](410–485 μ.Χ) αντιμετώπισαν πολλά ερωτήματα σχετικά με το άπειρο όπως θέματα που απαιτούσαν απόδειξη και,π.χ. ο Πρόκλος ισχυρίστηκε ότι μπορεί να αποδείξει την άπειρη διαιρετότητα μιας γραμμής,βασιζόμενος σε μια εις άτοπον απαγωγή στην οποία εξέτασε τις περιπτώσεις να αποτελείται ακόμη και από μονό αριθμό σημείων.


Στις αρχές του 20ου αιώνα οι  [[Otto Stolz]], [[Paul du Bois-Reymond]], [[Giuseppe Veronese]] και άλλοι παρήγαγαν αμφιλεγόμενο έργο σε μη αρχιμήδεια μοντέλα της ευκλείδειας γεωμετρίας,στα οποία η απόσταση μεταξύ δύο σημείων μπορεί να είναι άπειρη ή απειροελάχιστη,με την έννοια [[Isaac Newton|Newton]]–[[Gottfried Leibniz|Leibniz]].Πενήντα χρόνια αργότερα,ο [[Abraham Robinson]] συνέφερε με μια αυστηρή λογική θεμελίωση για το έργο του Veronese.
Στις αρχές του 20ου αιώνα οι  [[Otto stolz|Ότο στόλτς]], [[Paul du Bois-Reymond]], [[Τζουζέπε Βερονέζε]] και άλλοι παρήγαγαν αμφιλεγόμενο έργο σε μη αρχιμήδεια μοντέλα της ευκλείδειας γεωμετρίας,στα οποία η απόσταση μεταξύ δύο σημείων μπορεί να είναι άπειρη ή απειροελάχιστη,με την έννοια [[Isaac Newton|Newton]]–[[Gottfried Leibniz|Leibniz]].Πενήντα χρόνια αργότερα,ο [[Abraham robinson|Άμπραχαμ Ρόμπινσον]] συνέφερε με μια αυστηρή λογική θεμελίωση για το έργο του Veronese.


=== Άπειρες διαδικασίες ===
=== Άπειρες διαδικασίες ===
Γραμμή 150: Γραμμή 150:


=== Σύγχρονα πρότυπα της λιτότητας ===
=== Σύγχρονα πρότυπα της λιτότητας ===
Η τοποθέτηση της Ευκλείδειας γεωμετρίας σε μια σταθερή αξιωματική βάση ήταν μια ενασχόληση των μαθηματικών για αιώνες.Ο ρόλος των θεμελιωδών εννοιών,ή αλλιώς των απροσδιόριστων εννοιών εξελίχθηκε ξεκάθαρα από τον  [[Alessandro Padoa]] από την αντιπροσωπεία του Peano στην σύσκεψη του 1900 στο Παρίσι.<blockquote>...όταν ξεκινήσουμε να διατυπώνουμε τη θεωρία,μπορούμε να φανταστούμε ότι τα ακαθόριστα σύμβολα είναι εντελώς άνευ νοήματος και ότι οι προτάσεις χωρίς απόδειξη είναι απλά όροι που επιβάλλονται επί των ακαθόριστων συμβόλων.</blockquote><blockquote>Έπειτα το σύστημα των ιδεών που έχουμε αρχικά επιλέξει είναι απλά μια ερμηνεία των ακαθόριστων συμβόλων,αλλά αυτή η ερμηνεία μπορεί να αγνοηθεί από τον αναγνώστη,ο ποίος είναι ελεύθερος να την αντικαταστήσει στο μυαλό του με μια άλλη ερμηνεία...η οποία πληροί τις προϋποθέσεις...</blockquote><blockquote>Έτσι,τα λογικά ερωτήματα γίνονται εντελώς ανεξάρτητα από τα εμπειρικά ή τα ψυχολογικά ερωτήματα...</blockquote><blockquote>Το σύστημα των ακαθόριστων συμβόλων μπορεί τότε να θεωρηθεί ως η αφαίρεση που λαμβάνεται από τις εξειδικευμένες θεωρίες που προκύπτουν όταν...το σύστημα των απροσδιόριστων συμβόλων αντικαθίσταται διαδοχικά από κάθε μία από τις ερμηνείες...</blockquote><blockquote>— Padoa, ''Essai d'une théorie algébrique des nombre entiers, avec une Introduction logique à une théorie déductive qulelconque''</blockquote>Δηλαδή τα μαθηματικά είναι ανεξάρτητη γνώση μέσα σε ένα ιεραρχικό πλαίσιο.Όπως είπε ο  [[Bertrand Russell]].<blockquote>Αν η υπόθεσή μας είναι για το οτιδήποτε, και όχι για ένα ή περισσότερα συγκεκριμένα πράγματα,τότε τα συμπεράσματά μας αποτελούν μαθηματικά.'Ετσι,τα μαθηματικά μπορούν να οριστούν ως το αντικείμενο στο οποίο δε ξέρουμε ποτέ για τι πράγμα μιλάμε,ούτε αν αυτό που λέμε είναι αλήθεια.</blockquote><blockquote>— Bertrand Russell,''Τα Μαθηματικά και οι μεταφυσικοί''</blockquote>Τέτοιες θεμελιώδεις προσεγγίσεις κυμαίνονται μεταξύ του θεμελιωτισμού και του [[Φορμαλισμός|φορμαλισμού]].
Η τοποθέτηση της Ευκλείδειας γεωμετρίας σε μια σταθερή αξιωματική βάση ήταν μια ενασχόληση των μαθηματικών για αιώνες.Ο ρόλος των θεμελιωδών εννοιών,ή αλλιώς των απροσδιόριστων εννοιών εξελίχθηκε ξεκάθαρα από τον  [[Alessandro Padoa|Αλεσάντρο Παντοα]] από την αντιπροσωπεία του Peano στην σύσκεψη του 1900 στο Παρίσι.<blockquote>...όταν ξεκινήσουμε να διατυπώνουμε τη θεωρία,μπορούμε να φανταστούμε ότι τα ακαθόριστα σύμβολα είναι εντελώς άνευ νοήματος και ότι οι προτάσεις χωρίς απόδειξη είναι απλά όροι που επιβάλλονται επί των ακαθόριστων συμβόλων.</blockquote><blockquote>Έπειτα το σύστημα των ιδεών που έχουμε αρχικά επιλέξει είναι απλά μια ερμηνεία των ακαθόριστων συμβόλων,αλλά αυτή η ερμηνεία μπορεί να αγνοηθεί από τον αναγνώστη,ο ποίος είναι ελεύθερος να την αντικαταστήσει στο μυαλό του με μια άλλη ερμηνεία...η οποία πληροί τις προϋποθέσεις...</blockquote><blockquote>Έτσι,τα λογικά ερωτήματα γίνονται εντελώς ανεξάρτητα από τα εμπειρικά ή τα ψυχολογικά ερωτήματα...</blockquote><blockquote>Το σύστημα των ακαθόριστων συμβόλων μπορεί τότε να θεωρηθεί ως η αφαίρεση που λαμβάνεται από τις εξειδικευμένες θεωρίες που προκύπτουν όταν...το σύστημα των απροσδιόριστων συμβόλων αντικαθίσταται διαδοχικά από κάθε μία από τις ερμηνείες...</blockquote><blockquote>— Padoa, ''Essai d'une théorie algébrique des nombre entiers, avec une Introduction logique à une théorie déductive qulelconque''</blockquote>Δηλαδή τα μαθηματικά είναι ανεξάρτητη γνώση μέσα σε ένα ιεραρχικό πλαίσιο.Όπως είπε ο  [[Μπέρτραντ Ράσελ]].<blockquote>Αν η υπόθεσή μας είναι για το οτιδήποτε, και όχι για ένα ή περισσότερα συγκεκριμένα πράγματα,τότε τα συμπεράσματά μας αποτελούν μαθηματικά.'Ετσι,τα μαθηματικά μπορούν να οριστούν ως το αντικείμενο στο οποίο δε ξέρουμε ποτέ για τι πράγμα μιλάμε,ούτε αν αυτό που λέμε είναι αλήθεια.</blockquote><blockquote>— Bertrand Russell,''Τα Μαθηματικά και οι μεταφυσικοί''</blockquote>Τέτοιες θεμελιώδεις προσεγγίσεις κυμαίνονται μεταξύ του θεμελιωτισμού και του [[Φορμαλισμός|φορμαλισμού]].


=== Αξιωματικές διατυπώσεις ===
=== Αξιωματικές διατυπώσεις ===
<blockquote>Η Γεωμετρία είναι η επιστήμη της ορθής συλλογιστικής σε ανακριβή στοιχεία</blockquote><blockquote>— George Polyá, ''How to Solve It'', p. 208</blockquote>
<blockquote>Η Γεωμετρία είναι η επιστήμη της ορθής συλλογιστικής σε ανακριβή στοιχεία</blockquote><blockquote>— George Polyá, ''How to Solve It'', p. 208</blockquote>
* Αξίωμα του Ευκλείδη:Στην διατριβή του στο Trinity College,Cambridge, ο Bertrand Russell συνόψισε την αλλαγή του ρόλου της Ευκλείδειας γεωμετρίας στο μυαλό των φιλοσόφων μέχρι εκείνη την στιγμή.Ήταν μια σύγκρουση μεταξύ μιας ορισμένης γνώσης,ανεξάρτητης από πειράματα,και εμπειρισμού που απαιτούσε την είσοδο πειραμάτων.Το θέμα αυτό έγινε σαφές ,αφού ανακαλύφθηκε ότι το [[αξίωμα των παραλλήλων]] δεν ήταν απαραίτητα έγκυρο και η δυνατότητα εφαρμογής του ήταν ένα εμπειρικό θέμα,να αποφασιστεί αν η εφαρμοστέα γεωμετρία ήταν Ευκλείδεια ή [[Μη ευκλείδεια γεωμετρία|μη Ευκλείδεια]].
* Αξίωμα του Ευκλείδη:Στην διατριβή του στο Trinity College,Cambridge, ο Bertrand Russell συνόψισε την αλλαγή του ρόλου της Ευκλείδειας γεωμετρίας στο μυαλό των φιλοσόφων μέχρι εκείνη την στιγμή.Ήταν μια σύγκρουση μεταξύ μιας ορισμένης γνώσης,ανεξάρτητης από πειράματα,και εμπειρισμού που απαιτούσε την είσοδο πειραμάτων.Το θέμα αυτό έγινε σαφές ,αφού ανακαλύφθηκε ότι το [[αξίωμα των παραλλήλων]] δεν ήταν απαραίτητα έγκυρο και η δυνατότητα εφαρμογής του ήταν ένα εμπειρικό θέμα,να αποφασιστεί αν η εφαρμοστέα γεωμετρία ήταν Ευκλείδεια ή [[Μη ευκλείδεια γεωμετρία|μη Ευκλείδεια]].
* [[Αξιώματα Χίλμπερτ|Αξίωμα του Hilbert]]:Τα αξιώματα του Hilbert είχαν ως στόχο τον εντοπισμό ενός απλού και πλήρους συνόλου από ανεξάρτητα αξιώματα,από τα οποία θα μπορούσαν να συνταχθούν τα πιο σημαντικά γεωμετρικά θεωρήματα.Οι εκκρεμείς στόχοι ήταν να κάνουν την Ευκλείδεια γεωμετρία αυστηρή(αποφεύγοντας κρυμμένες υποθέσεις) και να καταστήσουν σαφείς τις επιπτώσεις του αξιώματος των παραλλήλων.
* [[Αξιώματα Χίλμπερτ|Αξίωμα του Χίλμπερτ]]:Τα αξιώματα του Hilbert είχαν ως στόχο τον εντοπισμό ενός απλού και πλήρους συνόλου από ανεξάρτητα αξιώματα,από τα οποία θα μπορούσαν να συνταχθούν τα πιο σημαντικά γεωμετρικά θεωρήματα.Οι εκκρεμείς στόχοι ήταν να κάνουν την Ευκλείδεια γεωμετρία αυστηρή(αποφεύγοντας κρυμμένες υποθέσεις) και να καταστήσουν σαφείς τις επιπτώσεις του αξιώματος των παραλλήλων.


* [[Αξιωματα Birkhoff|Αξιώματα του Birkhoff]]:Ο Birkhoff πρότεινε τέσσερα αξιώματα για Ευκλείδεια γεωμετρία που μπορούν να επιβεβαιωθούν πειραματικά με την κλίμακα και το μοιρογνωμόνιο.Αυτό το σύστημα στηρίζεται σε μεγάλο βαθμό στις ιδιότητες των [[Πραγματικός αριθμός|πραγματικών αριθμών]].Οι έννοιες της γωνίας και της απόστασης γίνονται θεμελιακές.
* [[Αξιωματα Birkhoff|Αξιώματα του Μπίρκοφ]]:Ο Birkhoff πρότεινε τέσσερα αξιώματα για Ευκλείδεια γεωμετρία που μπορούν να επιβεβαιωθούν πειραματικά με την κλίμακα και το μοιρογνωμόνιο.Αυτό το σύστημα στηρίζεται σε μεγάλο βαθμό στις ιδιότητες των [[Πραγματικός αριθμός|πραγματικών αριθμών]].Οι έννοιες της γωνίας και της απόστασης γίνονται θεμελιακές.
* [[Αξιώματα του Tarski]]:Ο Alfred Tarski(1902-1983) και οι μαθητές του προσδιόρισαν την στοιχειώδη Ευκλείδεια γεωμετρία ως τη γεωμετρία που μπορεί να εφαρμοστεί σε [[Λογική πρώτου βαθμού|πρώτης-τάξης λογική]] και η λογική της βάση δεν εξαρτάται από [[Θεωρία συνόλων|θεωρία των συνόλων]],σε αντίθεση με τα αξιώματα του Hilbert,που περιλαμβάνουν σύνολα σημείων.Ο Tarski απέδειξε ότι η αξιωματική διατύπωση της στοιχειώδους Ευκλείδειας γεωμετρίας είναι συνεπής και πλήρης κατά μια ορισμένη έννοια:υπάρχει ένας αλγόριθμος ο οποίος,για κάθε πρόταση,μπορεί να αποδειχθεί είτε αληθείς ή ψευδείς.(Αυτό δεν παραβιάζει το [[Θεωρήματα μη πληρότητας του Γκέντελ|Θεώρημα του Gödel]],επειδή η Ευκλείδεια γεωμετρία δεν μπορεί να περιγράψει μια επαρκή ποσότητα αριθμητικής για να εφαρμόσει το θεώρημα.)Αυτό είναι ισοδύναμο με τον όρο decidability των πραγματικών κλειστών πεδίων,των οποίων η στοιχειώδης Ευκλείδεια γεωμετρία αποτελεί μοντέλο.
* [[Αξιώματα του Tarski|Αξιώματα του Τάρσκι]]:Ο Alfred Tarski(1902-1983) και οι μαθητές του προσδιόρισαν την στοιχειώδη Ευκλείδεια γεωμετρία ως τη γεωμετρία που μπορεί να εφαρμοστεί σε [[Λογική πρώτου βαθμού|πρώτης-τάξης λογική]] και η λογική της βάση δεν εξαρτάται από [[Θεωρία συνόλων|θεωρία των συνόλων]],σε αντίθεση με τα αξιώματα του Hilbert,που περιλαμβάνουν σύνολα σημείων.Ο Tarski απέδειξε ότι η αξιωματική διατύπωση της στοιχειώδους Ευκλείδειας γεωμετρίας είναι συνεπής και πλήρης κατά μια ορισμένη έννοια:υπάρχει ένας αλγόριθμος ο οποίος,για κάθε πρόταση,μπορεί να αποδειχθεί είτε αληθείς ή ψευδείς.(Αυτό δεν παραβιάζει το [[Θεωρήματα μη πληρότητας του Γκέντελ|Θεώρημα του Gödel]],επειδή η Ευκλείδεια γεωμετρία δεν μπορεί να περιγράψει μια επαρκή ποσότητα αριθμητικής για να εφαρμόσει το θεώρημα.)Αυτό είναι ισοδύναμο με τον όρο decidability των πραγματικών κλειστών πεδίων,των οποίων η στοιχειώδης Ευκλείδεια γεωμετρία αποτελεί μοντέλο.
<blockquote></blockquote><blockquote></blockquote>
<blockquote></blockquote><blockquote></blockquote>



Έκδοση από την 10:11, 21 Μαΐου 2016

Λεπτομέρεια από τον πίνακα Η σχολή των Αθηνών του Ραφαήλ που δείχνει έναν Έλληνα μαθηματικό - ίσως αντιπροσωπεύει τον Ευκλείδη ή τον Αρχιμήδη- να χρησιμοποιεί μια πυξίδα για να ζωγραφίσει μια γεωμετρική κατασκευή.

Η Ευκλείδεια γεωμετρία είναι ένα μαθηματικό σύστημα που αποδίδεται στον αλεξανδρινό Έλληνα μαθηματικό Ευκλείδη και περιγράφεται στο βιβλίο του γεωμετρίας με όνομα: τα Στοιχεία. Η μέθοδος του Ευκλείδη βασίζεται στην υπόθεση ενός μικρού συνόλου αξιωμάτων και στην εξαγωγή πολλών προτάσεων(θεωρημάτων) από αυτά. Αν και πολλά από τα αποτελέσματα της δουλείας του Ευκλείδη έχουν αναφερθεί νωρίτερα από άλλους μαθηματικούς,[1] ο Ευκλείδης ήταν ο πρώτος που έδειξε πως αυτές οι προτάσεις μπορούν να εισαχθούν σε ένα περιεκτικό επαγωγικό και λογικό σύστημα.[2] Τα Στοιχεία αρχίζουν με επιπεδομετρία που διδάσκεται στο σχολείο ως το πρώτο αξιωματικό σύστημα αλλά και τα πρώτα παραδείγματα επίσημης απόδειξης και στη συνέχεια ασχολούνται με στερεομετρία τριών διαστάσεων. Το μεγαλύτερο μέρος των Στοιχείων αποτελούν κομμάτια της σημερινής άλγεβρας και θεωρίας αριθμών, γραμμένα σε γλώσσα γεωμετρίας.[3]

Για περισσότερα από δύο χιλιάδες χρόνια το επίθετο "Ευκλείδεια" γεωμετρία δεν ήταν απαραίτητο γιατί κανένα άλλο είδος γεωμετρίας δεν είχε δημιουργηθεί. Τα αξιώματα του Ευκλείδη διαισθητικά φαίνονταν τόσο προφανή (με πιθανή εξαίρεση το αξίωμα παραλληλίας) που κάθε θεώρημα που αποδεικνυόταν με αυτά κρινόταν σωστό με απόλυτη βεβαιότητα. Σήμερα παρ' όλα αυτά υπάρχουν πολλές ακόμα γεωμετρίες μη Ευκλείδειες που ανακαλύφθηκαν κατά τις αρχές του 19ου αιώνα. Ο μεγάλος φυσικός Άλμπερτ Αϊνστάιν μάλιστα είπε με την ανακάλυψη της θεωρίας της σχετικότητας ότι ο πραγματικός χώρος δεν είναι Ευκλείδειος, αλλά ο Ευκλείδειος χώρος είναι μια καλή προσέγγιση για περιοχές που το βαρυτικό πεδίο είναι αδύναμο.[4]

Η ευκλείδεια γεωμετρία είναι ένα παράδειγμα γεωμετρίας που δουλεύει χωρίς τη χρήση συντεταγμένων. Αντίθετα αν θέλουμε να δουλέψουμε με συντεταγμένες καταφεύγουμε στην αναλυτική γεωμετρία.

Αντικείμενο

Το αντικείμενο της Ευκλείδειας Γεωμετρίας είναι η μελέτη του χώρου και των σχημάτων που μπορούν να νοηθούν μέσα σε αυτόν. Γενικότερα στο χώρο διακρίνουμε τα σημεία (χωρίς καμία διάσταση), τις γραμμές (με μία διάσταση) και τις επιφάνειες (με δύο διαστάσεις). Οι επιφάνειες διαχωρίζουν τα αντικείμενα μεταξύ τους ή από το περιβάλλον. Πάνω σε μια επιφάνεια μπορούμε να θεωρήσουμε γραμμές, οι οποίες μάλιστα μπορούν να οριοθετηθούν. Στην καθημερινή γλώσσα μιλάμε π.χ. για «γραμμές της ασφάλτου» ή «σιδηροδρομικές γραμμές», ή «ακτοπλοϊκές γραμμές» λαμβάνοντας πάντα υπόψη κάποια αρχή (αφετηρία) και κάποιο τερματικό σημείο. Στην καθημερινή γλώσσα δεχόμαστε τις προσεγγίσεις ενώ στην γεωμετρία όχι. Λειτουργούμε αναγκαστικά πολλές φορές και με αφηρημένες έννοιες που αποκαλούμε άλλοτε «πρωταρχικούς όρους» και άλλοτε «γεωμετρικές προτάσεις».

Λέγεται ότι, όταν ζητήθηκε στον Ευκλείδη από τον Πτολεμαίο να του μάθει γεωμετρία, ο Πτολεμαίος του ζήτησε να μάθει μια «βασική» Γεωμετρία. Η απάντηση του Ευκλείδη ήταν «δεν υπάρχει βασιλικός δρόμος για τη Γεωμετρία».[5]

Έννοιες - προτάσεις

  • Πρωταρχικές έννοιες (ή αλλιώς, θεμελιώδεις έννοιες) στη Γεωμετρία είναι το σημείο, η ευθεία γραμμή, η γραμμή, το επίπεδο και η επιφάνεια.[6]
  • Η Ευκλείδεια Γεωμετρία θεμελιώνεται πάνω σε κάποιες προτάσεις που δεχόμαστε ως αληθινές: τα αξιώματα. Κάθε άλλη πρόταση (διαφορετική από τα αξιώματα) την θεωρούμε ώς αληθή μόνο εάν έχουμε καταλήξει σε αυτή αποδεικνύοντας την με βάση τα αξιώματα (κατά συνέπεια κάθε αποδεδειγμένη πρόταση μπορεί να χρησιμοποιηθεί για την απόδειξη μίας άλλης πρότασης).

Κάθε πρόταση περιέχει την υπόθεση και το συμπέρασμα, στο οποίο καταλήγουμε με τη βοήθεια της απόδειξης.

  • Η «υπόθεση» και το «συμπέρασμα» λέγονται συνθήκες της πρότασης . Στη Γεωμετρία δύο προτάσεις μπορεί να λέγονται:
αντίστροφες: όταν κάθε μια έχει ως υπόθεση το συμπέρασμα της άλλης.
αντίθετες: όταν οι συνθήκες (υπόθεση και συμπέρασμα) της μιας αποτελούν αρνήσεις των συνθηκών της άλλης, και τέλος
αντιστροφοαντίθετες: όταν κάθε μια έχει ως υπόθεση την άρνηση του συμπεράσματος της άλλης.
  • Αν δύο προτάσεις σχετίζονται με μία από τις τρεις προηγούμενες σχέσεις τότε η μία καλείται ευθεία πρόταση και η άλλη «αντίστροφη» ή «αντίθετη» ή «αντιστροφοαντίθετη», αντίστοιχα.
  • Δύο αντίστροφες προτάσεις λέγονται και ισοδύναμες όπου η κάθε μια εξ αυτών ονομάζεται αναγκαία και ικανή συνθήκη για την άλλη.
  • Κατά την εξέταση των γεωγραφικών σχημάτων η Γεωμετρία διακρίνεται στην Επιπεδομετρία και στη Στερεομετρία.

Βασικά στοιχεία της ευκλείδειας γεωμετρίας

Η μελέτη της Γεωμετρίας, όπως και κάθε αξιωματικής θεωρίας, ξεκινά από τις πρωταρχικές έννοιες των αξιωμάτων, οι οποίες προκύπτουν εμπειρικά και τις οποίες δεχόμαστε χωρίς περαιτέρω απόδειξη. Επίσης δεχόμαστε ως αρχική την έννοια του ανήκειν, αφού μας ενδιαφέρει να διατυπώνουμε προτάσεις γύρω από «σημεία που ανήκουν σε μια ευθεία» ή για «κύκλους που ανήκουν σε μια σφαίρα» κ.λπ. Τέλος, τα προηγούμενα υπόκεινται σε ορισμένα αξιώματα, δηλαδή σε κάποιες παραδοχές, τις οποίες επίσης δεχόμαστε ως διαισθητικά προφανείς, με βάση την εμπειρία. Χαρακτηριστικά αναφέρονται (αναλυτικότερα) τα Αξιώματα Χίλμπερτ.
Βασιζόμενοι σε αυτά, μπορούμε να προχωρήσουμε βήμα-βήμα αποδεικνύοντας όλα τα θεωρήματα της ευκλείδειας γεωμετρίας· κάθε απόδειξη θα στηρίζεται και θα προκύπτει από τα προηγούμενα συμπεράσματα. Η αποδεικτική μέθοδος δε, είναι κατά βάση κατασκευαστική και συνίσταται στη χρήση κανόνα και διαβήτη.

Τα Στοιχεία

κύρια πηγή: Στοιχεία

Τα Στοιχεία είναι ουσιαστικά μια συστηματοποίηση της τότε υπάρχουσας γνώσης γεωμετρίας. Τα παλαιότερα παρόμοια εγχειρήματα ήταν σαφώς κατώτερα και για το λόγο αυτό τα περισσότερα έχουν εξαφανιστεί. Η βελτίωση που παρείχαν τα Στοιχεία αναγνωρίστηκε αμέσως.

Υπάρχουν 13 συνολικά βιβλία στα Στοιχεία:

Τα βιβλία I-IV και VI ασχολούνται με γεωμετρία επιπέδου. Έχουν αποδειχτεί πολλά αποτελέσματα για το επίπεδο, όπως ότι "Για κάθε τρίγωνο αν πάρουμε δύο γωνίες μαζί με οποιονδήποτε τρόπο, το αποτέλεσμα θα είναι σίγουρα μικρότερο από δύο ορθές γωνίες" (Βιβλίο I Πρόταση 17), ή το Πυθαγόρειο θεώρημα "Το τετράγωνο της υποτείνουσας ενός ορθογωνίου τριγώνου ισούται με το άθροισμα των τετραγώνων των δύο καθέτων πλευρών" (Βιβλίο I Πρόταση 47).

Τα βιβλία V και VII-X έχουν να κάνουν με θεωρία αριθμών, με αριθμούς που αντιμετωπίζονται γεωμετρικά μέσω της αναπαράστασης τους ως ευθύγραμμα τμήματα με διάφορα μήκη. Εισάγονται και έννοιες όπως πρώτοι αριθμοί, ρητοί και άρρητοι αριθμοί. Επίσης αποδεικνύεται και η απειρία των πρώτων αριθμών.

Τέλος τα βιβλία XI-XIII μιλούν για στερεομετρία. Ένα γνωστό αποτέλεσμα είναι η εύρεση του λόγου του όγκου ενός κώνου και ενός κυλίνδρου με ίδιο ύψος και βάση που είναι ίσος με 1:3.

Αξιώματα

Η ευκλείδεια γεωμετρία είναι ένα αξιωματικό σύστημα στο οποίο τα θεωρήματα προέρχονται από ένα μικρό αριθμό αξιωμάτων[7]. Στην αρχή του πρώτου βιβλίου των Στοιχείων ο Ευκλείδης δίνει 5 αξιώματα για τη γεωμετρία του επιπέδου και σχετίζονται με τη κατασκευή.(Όπως το μετέφρασε ο Thomas Heath)[8]:

"Let the following be postulated"(δηλαδή ας πάρουμε τα παρακάτω ως αποδεκτά):

Αξίωμα παραλληλίας: "Έστω δύο ευθείες που τέμνονται με μια τρίτη. Οι ευθείες αυτές θα έχουν ένα σημείο τομής από την μεριά που οι εσωτερικές γωνίες που σχηματίζονται με την τρίτη ευθεία έχουν άθροισμα μικρότερο από δύο ορθές γωνίες."
  1. "Η κατασκευή μιας ευθείας γραμμής από ένα σημείο σε οποιοδήποτε άλλο"
  2. "Μια πεπερασμένη ευθεία μπορεί να επεκταθεί απεριόριστα"
  3. "Ένας κύκλος ορίζεται από ένα κέντρο και μια απόσταση(ακτίνα)"
  4. "Όλες οι ορθές γωνίες είναι ίσες"
  5. Το αξίωμα παραλληλίας: "Αν μια ευθεία τέμνει δύο άλλες, τότε αυτές οι δύο αν επεκταθούν επ' αόριστον θα τμηθούν απ' την μεριά που οι εσωτερικές γωνίες που σχηματίζονται έχουν άθροισμα μικρότερο από δύο κάθετες"

Τα Στοιχεία περιλαμβάνουν επίσης τις επόμενες 5 "κοινές έννοιες":

  1. Αντικείμενα που είναι ίσα με κάποιο άλλο ίδιο αντικείμενο είναι και μεταξύ τους ίσα (μεταβατική ιδιότητα ισότητας)
  2. Αν ίσα αντικείμενα προστεθούν σε ίσα, τότε τα τελικά παραμένουν ίσα(προσθετική ιδιότητα)
  3. Αν ίσα αφαιρεθούν από ίσα, τότε τα τελικά είναι επίσης ίσα(αφαιρετική ιδιότητα)
  4. Αντικείμενα που συμπίπτουν μεταξύ τους είναι ίσα
  5. Το όλο είναι μεγαλύτερο από ένα κομμάτι του.

Αξίωμα Παραλληλίας

Το αξίωμα αυτό σε σχέση με τα άλλα έμοιαζε λιγότερο προφανές για τους αρχαίους. Επειδή μάλιστα ενδιαφέρονταν να φτιάξουν ένα αυστηρά θεμελιωμένο σύστημα σκέφτονταν ότι ίσως θα πρέπει το αξίωμα αυτό να αποδειχθεί και να μην θεωρηθεί ως δεδομένο. Σήμερα γνωρίζουμε ότι μια τέτοια απόδειξη είναι μαθηματικά αδύνατη[9]. Ο Ευκλείδης παρ'όλα αυτά οργάνωσε τα Στοιχεία του έτσι ώστε οι 28 πρώτες προτάσεις να είναι αυτές που δε χρειάζονται το αξίωμα της παραλληλίας για να αποδειχθούν.

Πολλά αξιώματα μπορούν να διατυπωθούν ώστε να έχουν ίδιες λογικές συνέπειες με το αξίωμα της παραλληλίας. Για παράδειγμα το αξίωμα Playfair's που μπορεί να χρησιμοποιηθεί αντί του 5ου αξιώματος του Ευκλείδη λέει το εξής:

Σε ένα επίπεδο δοθέντος μιας ευθείας και ενός σημείου εκτός αυτής, μπορώ να κατασκευάσω το πολύ μια ευθεία παράλληλη προς τη δοθείσα που θα περνάει απ' το δοθέν σημείο.

Μέθοδοι απόδειξης

Απόδειξη απ' τα Στοιχεία του Ευκλείδη. "Αν έχουμε ένα τυχαίο ευθύγραμμο τμήμα, τότε υπάρχει ένα ισόπλευρο τρίγωνο που θα έχει αυτό το τμήμα ως μια απ΄ τις πλευρές του". Η απόδειξη είναι κατασκευαστική. Το ισόπλευρο τρίγωνο ΑΒΓ φτιάχνεται αν κατασκευάσουμε δύο κύκλους Δ και Ε με κέντρα Α και Β αντίστοιχα και πάρουμε το σημείο Γ να είναι μια απ΄τις δύο τομές των δύο κύκλων. Ενώνοντας τα σημεία Α,Β και Γ έχουμε το ζητούμενο ισόπλευρο τρίγωνο.

Η ευκλείδεια γεωμετρία είναι "κατασκευαστική". Τα αξιώματα 1,2,3 και 5 μας εξασφαλίζουν την ύπαρξη και μοναδικότητα συγκεκριμένων γεωμετρικών σχημάτων. Δε μένουν όμως μόνο εκεί γιατί μας εξασφαλίζουν και τις μεθόδους που τα κατασκευάζουν. Γιαυτό λέμε ότι είναι και "κατασκευαστική". Τα εργαλεία που απαιτούνται για την κατασκευή είναι χάρακας και διαβήτης[10].Έτσι μπορούμε να πούμε ότι η Ευκλείδεια γεωμετρία είναι πιο συμπαγής από άλλα μοντέρνα αξιωματικά συστήματα όπως ας πούμε η θεωρία συνόλων, που συχνά εξασφαλίζουν μόνο την ύπαρξη και όχι την μέθοδο κατασκευής ενός αντικειμένου. Υπάρχουν και περιπτώσεις που εξασφαλίζεται η ύπαρξη αλλά η ίδια θεωρία δεν επιτρέπει την κατασκευή.[11] Οι κατασκευαστικές αποδείξεις του Ευκλείδη πολλές φορές αντικαταστάθηκαν από άλλες μη-κατασκευαστικές. Π.χ μερικές αποδείξεις του Πυθαγόρα που περιείχαν άρρητους αριθμούς. Ο Ευκλείδης συχνά χρησιμοποιούσε και την μέθοδο της εις άτοπον απαγωγής. Η ευκλείδεια γεωμετρία επίσης επιτρέπει και τη μέθοδο της υπέρθεσης κατά την οποία ένα αντικείμενο μεταφέρεται από ένα σημείο του χώρου σε κάποιο άλλο. Για παράδειγμα ή Πρόταση Ι4: η ισότητα τριγώνων μπορεί να αποδειχθεί μετακινώντας ένα απ΄ τα τρίγωνα έτσι ώστε η μια πλευρά του να συμπέσει στην αντίστοιχη ίση πλευρά του άλλου τριγώνου και στη συνέχεια αποδεικνύοντας ότι και οι άλλες δύο πλευρές των τριγώνων συμπίπτουν. Ως εναλλακτική της υπέρθεσης έχουμε μοντέρνα μαθηματικά που χρησιμοποιούν ένα ακόμα έκτο αξίωμα που έχει να κάνει με την ακαμψία του τριγώνου.

Σύστημα μέτρησης και αριθμητική

Η ευκλείδεια γεωμετρία έχει δύο θεμελιώδεις τύπους μέτρησης: γωνία και απόσταση. Ο Ευκλείδης χρησιμοποιούσε την ορθή γωνία ως μια βασική μονάδα για να περιγράψει τις υπόλοιπες γωνίες. Δηλαδή μια γωνία 45 μοιρών είναι ίση με μισή ορθή γωνία. Η απόσταση παρ'όλα αυτά δεν είχε έναν σταθερό γνώμονα όπως η ορθή γωνία. Επιλέγοντας ένα τυχαίο ευθύγραμμο τμήμα μπορούσε κανείς να μετρήσει όλα τα υπόλοιπα σε συνάρτηση με το πρώτο. Ένα τμήμα με μήκος χ αντιστοιχεί στον αριθμό αυτό. Αν θέλουμε να προσθέσουμε δύο αριθμούς χ και y παίρνουμε τα τμήματα με μήκος χ και y και τοποθετούμε το τέλος του ενός στην αρχή του άλλου. Αυτή είναι και μια γεωμετρική ερμηνεία της πρόσθεσης. Με ανάλογο τρόπο γίνεται η αφαίρεση.

Η μέτρηση εμβαδού και όγκου προέρχεται από τις αποστάσεις. Για παράδειγμα ένα ορθογώνιο παραλληλόγραμμο με πλάτος 3 και μήκος 4 έχει εμβαδόν ίσο με το γινόμενο των δύο. Επειδή η γεωμετρική αυτή ερμηνεία του πολλαπλασιασμού περιορίζεται στις τρεις διαστάσεις δεν μπορούσε να αναπαρασταθεί γεωμετρικά το γινόμενο τεσσάρων και πάνω αριθμών. Έτσι ο Ευκλείδης αν και έκανε κάποιους υπαινιγμούς(π.χ Πρόταση 20 βιβλίο ΙΧ), συνήθως αγνοούσε το γινόμενο τεσσάρων και πάνω αριθμών.

Ένα παράδειγμα ισότητας. Τα πρώτα δύο τρίγωνα είναι ίσα μεταξύ τους και όμοια με το τρίτο τρίγωνο. Το τελευταίο δεν είναι τίποτα με τα πρώτα τρία. Παρατηρούμε ότι η θέση και η φορά των τριγώνων μπορεί να αλλάζουν αλλά αυτά που παραμένουν για να έχουμε ισότητα είναι η απόσταση και η γωνία.

Ο Ευκλείδης αναφέρει ένα ζευγάρι ευθειών, επιπέδων ή στερεών ως "ίσα" αν τα μήκη, εμβαδά ή όγκοι τους είναι αντίστοιχα ίσοι. Όμοια για τις γωνίες. Η ισχυρότερη έννοια "ισότητα" ορίζεται να είναι η ιδιότητα που λέει πως ένα αντικείμενο έχει ίδιο μέγεθος και σχήμα με κάποιο άλλο. Επίσης ένα σχήμα είναι ίσο με ένα άλλο αν μετακινήσουμε το πρώτο πάνω στο δεύτερο και παρατηρήσουμε ότι ταυτίζονται. Π.χ ένα ορθογώνιο 2*6 με ένα ορθογώνιο 3*4 είναι ισοδύναμα αλλά δεν είναι ίσα. Σχήματα που είναι ίσα χωρίς να έχουν ίδιο μέγεθος αποκαλούνται όμοια. Αντίστοιχες γωνίες σε ένα ζευγάρι όμοιων σχημάτων είναι ίσες και αντίστοιχες πλευρές είναι ανάλογες μεταξύ τους.

Ιστορική συμβολή

Ιστορικά η Γεωμετρία ήταν ο πρώτος τεχνικός κλάδος της ανθρώπινης γνώσης που διαμορφώθηκε στο πέρασμα των αιώνων σε επιστήμη, αλλά και για πολλούς αιώνες ο μοναδικός.

Ορισμένα σημαντικά ή πολύ γνωστά αποτελέσματα

Pons Asinorum

Το Θεώρημα της γέφυρας των γαϊδουριών (Pons Asinorum) αναφέρει ότι σε ισοσκελή τρίγωνα οι γωνίες της βάσης είναι ίσες μεταξύ τους, και αν οι ίσες ευθείες γραμμές παράγονται περαιτέρω τότε οι γωνίες κάτω από την βάση είναι ίσες.[12]Το όνομά του μπορεί να αποδοθεί στον συχνό ρόλο του ως το πρώτο πραγματικό test στα Στοιχεία της κατανόησης του αναγνώστη και ως γέφυρα στις πιο δύσκολες προτάσεις που ακολουθούν.Επίσης μπορεί και να ονομάστηκε έτσι λόγω της ομοιότητας των γεωμετρικών σχημάτων με μία απότομη γέφυρα που μόνο ένας αλάνθαστος γάιδαρος θα μπορούσε να διασχίσει.

Ισότητα Τριγώνων

Τα τρίγωνα είναι ίσα αν έχουν όλες τις πλευρές τους ίσες ή αν έχουν δύο πλευρές και την γωνία ανάμεσα τους ίσες ή αν έχουν δύο γωνίες μία πλευρά ίση μεταξύ τους.(Βιβλίο I , προτάσεις 4 , 8 ,26).Τρίγωνα με τρεις ίσες γωνίες είναι όμοια, αλλά όχι αναγκαστικά ίσα.Επίσης τα τρίγωνα με δύο ίσες πλευρές και μία οποιαδήποτε γωνία δεν είναι απαραίτητα όμοια και ίσα.

Άθροισμα γωνίας τριγώνου

Το άθροισμα των γωνιών ενός τριγώνου είναι ίσο με μία ευθεία γωνία(180 μοίρες).[13]Αυτό έχει ως αποτέλεσμα ένα ισόπλευρο τρίγωνο να έχει τρεις εσωτερικές γωνίες από 60 μοίρες η κάθε γωνία.Επίσης αυτό σημαίνει ότι κάθε τρίγωνο έχει το λιγότερο δύο οξείες γωνίες και μέχρι μία αμβλεία γωνία ή ορθή γωνία.

Το Πυθαγόρειο Θεώρημα

Το περίφημο Πυθαγόρειο Θεώρημα (Βιβλίο I,πρόταση 47) αναφέρει ότι σε κάθε ορθογώνιο τρίγωνο το τετράγωνο της υποτείνουσας(η πλευρά απέναντι από την ορθή γωνία) ισούται με το άθροισμα των τετραγώνων των δύο κάθετων πλευρών.

Το Θεώρημα του Θαλή

Το Θεώρημα του Θαλή που ονομάστηκε έτσι λόγω του Θαλή του Μιλήσιου αναφέρει ότι αν Α,Β,Γ είναι σημεία ενός κύκλου όπου η γραμμή ΑΓ είναι η διάμετρος του κύκλου ,τότε η γωνία ΑΒΓ είναι ορθή γωνία.Ο Καντόρ υπέθεσε ότι ο Θαλής απέδειξε το θεώρημα του μέσω του 1ου βιβλίου του Ευκλείδη(πρόταση 32) μετά από τον τρόπο που χρησιμοποιήθηκε στο 3ο Βιβλίο του Ευκλείδη(πρόταση 31).[14]Η παράδοση μάλιστα λέει ότι θυσίασε ένα ζώο για να γιορτάσει το γεγονός ότι απέδειξε το θεώρημα.[15]

Κλιμάκωση του εμβαδού και του όγκου

Στην σύγχρονη ορολογία,το εμβαδόν ενός σχήματος αεροπλάνου είναι ανάλογο με το τετράγωνο μιας οποιασδήποτε από τις γραμμικές του διαστάσεις. ως προς τον όγκο του στερεού ως προς τον κύβο, .Ο Ευκλείδης απέδειξε αυτά τα αποτελέσματα σε πολλές διάφορες ειδικές περιπτώσεις όπως αυτή του κύκλου[16] και του όγκου σε παραλληλεπίπεδο στερεό[17].Ο Ευκλείδης καθόρισε κάποιες ,αλλά όχι όλες, από τις σχετικές σταθερές της αναλογικότητας.Για παράδειγμα ήταν ο διάδοχός του ο Αρχιμήδης εκείνος ο οποίος απέδειξε ότι μια σφαίρα έχει τα 2/3 του όγκου του κυλίνδρου που περικλείει.[18]

Εφαρμογές

Λόγω της θεμελιώδους θέσης της Ευκλείδειας γεωμετρίας στα μαθηματικά, θα ήταν αδύνατο να δοθεί παραπάνω από ένα αντιπροσωπευτικό δείγμα των εφαρμογών.

Όπως φαίνεται από την ετυμολογία της λέξης , ένας από τους πρώτους λόγους για το ενδιαφέρον προς την γεωμετρία ήταν η χωρομέτρηση (μέτρηση του χώρου),και ορισμένα πρακτικά αποτελέσματα από την Ευκλείδια γεωμετρία ,όπως η κυριότητα της ορθής γωνίας ενός 3-4-5 τριγώνου , χρησιμοποιούνταν αρκετό καιρό πριν αποδειχθούν και επίσημα.Οι θεμελιώδεις τύποι των μετρήσεων στην Ευκλείδεια γεωμετρία είναι αποστάσεις και γωνίες.Αυτές οι δύο ποσότητες μπορούν να υπολογιστούν κατευθείαν από έναν τοπογράφο.Ιστορικά οι αποστάσεις μετριόταν συνήθως με αλυσίδες όπως για παράδειγμα οι λεγόμενες Gunter's chain, ενώ για την μέτρηση των γωνιών χρησιμοποιούνταν κύκλοι και αργότερα ο θεοδόλιχος.

Μία εφαρμογή της Ευκλείδειας στερεάς γεωμετρίας είναι ο καθορισμός των ρυθμίσεων συσκευασίας(δηλαδή το πακετάρισμα όλων των αντικειμένων σε ένα κιβώτιο ή σε όσο το δυνατόν λιγότερα κιβώτια γίνεται), όπως η εύρεση του πιο αποτελεσματικού τρόπου συσκευασίας σφαιρών σε n διαστάσεις.Το πρόβλημα αυτό έχει εφαρμογή στην ανίχνευση και διόρθωση σφαλμάτων.

Η Γεωμετρική Οπτική χρησιμοποιεί Ευκλείδεια γεωμετρία στην ανάλυση και εστίαση του φωτός από φακούς και καθρέφτες.

Η Γεωμετρία χρησιμοποιείται εκτενώς και στην αρχιτεκτονική.

Χρησιμοποιείται επίσης και στον σχεδιασμό Origami.Κάποια κλασσικά προβλήματα γεωμετρίας είναι αδύνατο να λυθούν με την χρήση χάρακα και διαβήτη αλλά μπορούν να λυθούν με την μέθοδο Origami.

Ως περιγραφή της δομής του χώρου

19ος αιώνας και μη Ευκλείδεια Γεωμετρία

Στις αρχές του 19ου αιώνα,ο Καρνό και ο Μέμπιους ανέπτυξαν συστηματικά τη χρήση των υπογεγραμμένων γωνιών και των ευθύγραμμων τμημάτων ως έναν τρόπο για την απλοποίηση και ενοποίηση των αποτελεσμάτων.

Η σημαντικότερη εξέλιξη του αιώνα στη γεωμετρία σημειώθηκε όταν,γύρω στο 1830,ο Janos Bolyai και ο Νικολάι Λομπατσέφσκι δημοσίευσαν χωριστά έργο στην μη Ευκλείδεια γεωμετρία , στην οποία το αξίωμα των παραλλήλων δεν είναι έγκυρο.Δεδομένου ότι η μη Ευκλείδεια γεωμετρία είναι αποδεδειγμένα σχετικά συνδεδεμένη με την Ευκλείδεια γεωμετρία,το αξίωμα των παραλλήλων δεν μπορεί να αποδειχθεί από τα άλλα αξιώματα.

Κατά τον 19ο αιώνα,έγινε επίσης αντιληπτό ότι τα δέκα αξιώματα και κοινές έννοιες του Ευκλείδη δεν επαρκούν για να αποδείξουν όλα τα θεωρήματα που αναφέρονται στα Στοιχεία.Για παράδειγμα,ο Ευκλείδης υπέθεσε σιωπηρά ότι κάθε γραμμή περιέχει τουλάχιστον δύο σημεία , αλλά η υπόθεση αυτή δεν μπορεί να αποδειχθεί από τα άλλα αξιώματα , και ως εκ τούτου θα πρέπει να αποτελεί από μόνης της ένα αξίωμα.Η πρώτη γεωμετρική απόδειξη στα Στοιχεία,όπως φαίνεται στο σχήμα παραπάνω,είναι ότι κάθε τμήμα γραμμής είναι μέρος ενός τριγώνου.Ο Ευκλείδης το κατασκεύασε με τον συνήθη τρόπο, σχεδιάζοντας κύκλους γύρω από τα δύο τελικά σημεία και παίρνοντας την τομή τους ως την τρίτη κορυφή.Τα αξιώματά του,ωστόσο,δεν εγγυώνται ότι οι κύκλοι τέμνονται στην πραγματικότητα,επειδή δεν υποστηρίζουν τη γεωμετρική ιδιότητα της συνέχειας,η οποία από Καρτεσιανή άποψη είναι ισοδύναμη με την ιδιότητα της πληρότητας των πραγματικών αριθμών.Ξεκινώντας από αυτό του Μόριτς Πας,το 1882,πολλά βελτιωμένα αξιωματικά συστήματα για γεωμετρία έχουν προταθεί,τα ποιο γνωστά από τα οποία είναι εκείνα των Χίλμπερτ,George Birkhoff και Τάρσκι.

20ος αιώνας και γενική σχετικότητα

Η θεωρία της γενικής σχετικότητας του Άλμπερτ Αϊνστάιν δείχνει ότι η πραγματική γεωμετρία του χωροχρόνου δεν είναι Ευκλείδεια γεωμετρία.Για παράδειγμα αν ένα τρίγωνο κατασκευαστεί από τρεις ακτίνες φωτός,τότε σε γενικές γραμμές οι εσωτερικές γωνίες δε φτάνουν το άθροισμα των 180 μοιρών λόγω της βαρύτητας.Ένα σχετικά ασθενές βαρυτικό πεδίο,όπως της Γης ή του Ήλιου,αντιπροσωπεύεται από μία μετρική που είναι σχεδόν,αλλά όχι ακριβώς,Ευκλείδεια.Μέχρι τον 20ο αιώνα , δεν υπήρχε τεχνολογία ικανή να ανιχνεύσει τις αποκλίσεις από την Ευκλείδεια γεωμετρία, αλλά ο Αϊνστάιν προέβλεψε ότι τέτοιες αποκλίσεις θα υπάρξουν.Αργότερα επαληθεύονται από παρατηρήσεις,όπως η ελαφριά κάμψη του αστρικού φωτός από τον Ήλιο κατά τη διάρκεια μιας ηλιακής έκλειψης το 1919,και τέτοιες σκέψεις είναι πλέον αναπόσπαστο κομμάτι του λογισμικού που τρέχει το σύστημα GPS.Είναι δυνατόν να αντιταχθεί σε αυτή την ερμηνεία της γενικής σχετικότητας με την αιτιολογία ότι οι ακτίνες του φωτός μπορεί να είναι ακατάλληλα φυσικά μοντέλα των γραμμών του Ευκλείδη,ή ότι η σχετικότητα θα μπορούσε να αναδιατυπωθεί , ώστε να αποφύγει τις γεωμετρικές ερμηνείες.Ωστόσο,μία από τις συνέπειες της θεωρίας του Αϊνστάιν είναι ότι δεν υπάρχει καμία δυνατή φυσική δοκιμή που να μπορεί να διακρίνει ανάμεσα σε μια ακτίνα του φωτός ως ένα μοντέλο γεωμετρικής γραμμής και κάθε άλλο φυσικό φαινόμενο.Έτσι,το μόνο λογικό ενδεχόμενο είναι να αποδεχτούμε την μη Ευκλείδεια γεωμετρία ως φυσική πραγματικότητα, ή να απορρίψουμε ολόκληρη την έννοια των φυσικών δοκιμών των αξιωμάτων της γεωμετρίας,κάτι το οποίο μπορεί τότε να φανταστεί ως ένα επίσημο σύστημα χωρίς κανένα πραγματικό νόημα.

Μεταχείριση του άπειρου

Αντικείμενα του άπειρου

Ο Ευκλείδης μερικές φορές έκανε σαφή διάκριση μεταξύ των πεπερασμένων γραμμών(π.χ.αξίωμα 2) και των άπειρων γραμμών(βιβλίο 1,πρόταση 12).Ωστόσο συνήθως δεν έκανε τέτοιες διακρίσεις,εκτός αν ήταν αναγκαίο.Τα αξιώματα δεν αναφέρονται ρητά στις άπειρες γραμμές,αν και για παράδειγμα μερικοί σχολιαστές ερμηνεύουν το αξίωμα 3,για την ύπαρξη κύκλου με οποιαδήποτε ακτίνα,ως υπόνοια ότι ο χώρος είναι άπειρος.

Η έννοια της απειροελάχιστης ποσότητας είχε προηγουμένως συζητηθεί εκτενώς από την σχολή Ελεατική,αλλά κανείς δεν ήταν σε θέση να τους βάλει σε μια σταθερή λογική βάση με τα παράδοξα όπως αυτό του Ζήνων να εμφανίζονται χωρίς μια παγκόσμια αποδεκτή λύση.Ο Ευκλείδης χρησιμοποίησε τη μέθοδο της εξάντλησης αντί γι αυτήν της απειροελάχιστης απόστασης.

Αργότερα σχολιαστές όπως ο Πρόκλος(410–485 μ.Χ) αντιμετώπισαν πολλά ερωτήματα σχετικά με το άπειρο όπως θέματα που απαιτούσαν απόδειξη και,π.χ. ο Πρόκλος ισχυρίστηκε ότι μπορεί να αποδείξει την άπειρη διαιρετότητα μιας γραμμής,βασιζόμενος σε μια εις άτοπον απαγωγή στην οποία εξέτασε τις περιπτώσεις να αποτελείται ακόμη και από μονό αριθμό σημείων.

Στις αρχές του 20ου αιώνα οι  Ότο στόλτςPaul du Bois-ReymondΤζουζέπε Βερονέζε και άλλοι παρήγαγαν αμφιλεγόμενο έργο σε μη αρχιμήδεια μοντέλα της ευκλείδειας γεωμετρίας,στα οποία η απόσταση μεταξύ δύο σημείων μπορεί να είναι άπειρη ή απειροελάχιστη,με την έννοια NewtonLeibniz.Πενήντα χρόνια αργότερα,ο Άμπραχαμ Ρόμπινσον συνέφερε με μια αυστηρή λογική θεμελίωση για το έργο του Veronese.

Άπειρες διαδικασίες

Ένας λόγος που οι αρχαίοι αντιμετώπισαν το αξίωμα των παραλλήλων ως λιγότερο βέβαιο σε σχέση με άλλα είναι ότι η φυσική του επαλήθευση θα απαιτούσε από εμάς να θεωρήσουμε δυο γραμμές για να ελέγξουμε ότι δεν τέμνονται ποτέ,ακόμη και σε κάποιο πολύ μακρινό σημείο,και ο έλεγχος αυτός θα μπορούσε ενδεχομένως να πάρει ένα άπειρο χρονικά διάστημα.

Η σύγχρονη διατύπωση της απόδειξης με επαγωγή δεν αναπτύχθηκε μέχρι τον 17ο αιώνα,αλλά κάποιοι μετέπειτα σχολιαστές θεώρησαν ότι βρίσκει εφαρμογή σε κάποιες αποδείξεις του Ευκλείδη,π.χ. η απόδειξη για την απειρία των πρώτων αριθμών.

Υποτίθεται ότι τα παράδοξα που αφορούν άπειρες σειρές,όπως το παράδοξο του Ζήνων,προηγήθηκαν του Ευκλείδη.Ο Ευκλείδης απέφευγε τέτοιες συζητήσεις,όπως για παράδειγμα, την έκφραση για τα τμηματικά αθροίσματα των γεωμετρικών σειρών στο IX.35,χωρίς να σχολιάσει την πιθανότητα να αφήσει τον αριθμό των όρων να γίνει άπειρος.

Λογική βάση

Κλασική λογική

Ο Ευκλείδης χρησιμοποιούσε συχνά τη μέθοδο της εις άτοπον απαγωγής και ως εκ τούτου η παραδοσιακή παρουσίαση της Ευκλείδειας γεωμετρίας υποθέτει την κλασική λογική,στην οποία κάθε πρόταση είναι είτε σωστή είτε λάθος ,δηλαδή για κάθε πρόταση Π ,η πρόταση ''Π η όχι Π'' είναι αυτόματα σωστή.

Σύγχρονα πρότυπα της λιτότητας

Η τοποθέτηση της Ευκλείδειας γεωμετρίας σε μια σταθερή αξιωματική βάση ήταν μια ενασχόληση των μαθηματικών για αιώνες.Ο ρόλος των θεμελιωδών εννοιών,ή αλλιώς των απροσδιόριστων εννοιών εξελίχθηκε ξεκάθαρα από τον  Αλεσάντρο Παντοα από την αντιπροσωπεία του Peano στην σύσκεψη του 1900 στο Παρίσι.

...όταν ξεκινήσουμε να διατυπώνουμε τη θεωρία,μπορούμε να φανταστούμε ότι τα ακαθόριστα σύμβολα είναι εντελώς άνευ νοήματος και ότι οι προτάσεις χωρίς απόδειξη είναι απλά όροι που επιβάλλονται επί των ακαθόριστων συμβόλων.

Έπειτα το σύστημα των ιδεών που έχουμε αρχικά επιλέξει είναι απλά μια ερμηνεία των ακαθόριστων συμβόλων,αλλά αυτή η ερμηνεία μπορεί να αγνοηθεί από τον αναγνώστη,ο ποίος είναι ελεύθερος να την αντικαταστήσει στο μυαλό του με μια άλλη ερμηνεία...η οποία πληροί τις προϋποθέσεις...

Έτσι,τα λογικά ερωτήματα γίνονται εντελώς ανεξάρτητα από τα εμπειρικά ή τα ψυχολογικά ερωτήματα...

Το σύστημα των ακαθόριστων συμβόλων μπορεί τότε να θεωρηθεί ως η αφαίρεση που λαμβάνεται από τις εξειδικευμένες θεωρίες που προκύπτουν όταν...το σύστημα των απροσδιόριστων συμβόλων αντικαθίσταται διαδοχικά από κάθε μία από τις ερμηνείες...

— Padoa, Essai d'une théorie algébrique des nombre entiers, avec une Introduction logique à une théorie déductive qulelconque

Δηλαδή τα μαθηματικά είναι ανεξάρτητη γνώση μέσα σε ένα ιεραρχικό πλαίσιο.Όπως είπε ο  Μπέρτραντ Ράσελ.

Αν η υπόθεσή μας είναι για το οτιδήποτε, και όχι για ένα ή περισσότερα συγκεκριμένα πράγματα,τότε τα συμπεράσματά μας αποτελούν μαθηματικά.'Ετσι,τα μαθηματικά μπορούν να οριστούν ως το αντικείμενο στο οποίο δε ξέρουμε ποτέ για τι πράγμα μιλάμε,ούτε αν αυτό που λέμε είναι αλήθεια.

— Bertrand Russell,Τα Μαθηματικά και οι μεταφυσικοί

Τέτοιες θεμελιώδεις προσεγγίσεις κυμαίνονται μεταξύ του θεμελιωτισμού και του φορμαλισμού.

Αξιωματικές διατυπώσεις

Η Γεωμετρία είναι η επιστήμη της ορθής συλλογιστικής σε ανακριβή στοιχεία

— George Polyá, How to Solve It, p. 208

  • Αξίωμα του Ευκλείδη:Στην διατριβή του στο Trinity College,Cambridge, ο Bertrand Russell συνόψισε την αλλαγή του ρόλου της Ευκλείδειας γεωμετρίας στο μυαλό των φιλοσόφων μέχρι εκείνη την στιγμή.Ήταν μια σύγκρουση μεταξύ μιας ορισμένης γνώσης,ανεξάρτητης από πειράματα,και εμπειρισμού που απαιτούσε την είσοδο πειραμάτων.Το θέμα αυτό έγινε σαφές ,αφού ανακαλύφθηκε ότι το αξίωμα των παραλλήλων δεν ήταν απαραίτητα έγκυρο και η δυνατότητα εφαρμογής του ήταν ένα εμπειρικό θέμα,να αποφασιστεί αν η εφαρμοστέα γεωμετρία ήταν Ευκλείδεια ή μη Ευκλείδεια.
  • Αξίωμα του Χίλμπερτ:Τα αξιώματα του Hilbert είχαν ως στόχο τον εντοπισμό ενός απλού και πλήρους συνόλου από ανεξάρτητα αξιώματα,από τα οποία θα μπορούσαν να συνταχθούν τα πιο σημαντικά γεωμετρικά θεωρήματα.Οι εκκρεμείς στόχοι ήταν να κάνουν την Ευκλείδεια γεωμετρία αυστηρή(αποφεύγοντας κρυμμένες υποθέσεις) και να καταστήσουν σαφείς τις επιπτώσεις του αξιώματος των παραλλήλων.
  • Αξιώματα του Μπίρκοφ:Ο Birkhoff πρότεινε τέσσερα αξιώματα για Ευκλείδεια γεωμετρία που μπορούν να επιβεβαιωθούν πειραματικά με την κλίμακα και το μοιρογνωμόνιο.Αυτό το σύστημα στηρίζεται σε μεγάλο βαθμό στις ιδιότητες των πραγματικών αριθμών.Οι έννοιες της γωνίας και της απόστασης γίνονται θεμελιακές.
  • Αξιώματα του Τάρσκι:Ο Alfred Tarski(1902-1983) και οι μαθητές του προσδιόρισαν την στοιχειώδη Ευκλείδεια γεωμετρία ως τη γεωμετρία που μπορεί να εφαρμοστεί σε πρώτης-τάξης λογική και η λογική της βάση δεν εξαρτάται από θεωρία των συνόλων,σε αντίθεση με τα αξιώματα του Hilbert,που περιλαμβάνουν σύνολα σημείων.Ο Tarski απέδειξε ότι η αξιωματική διατύπωση της στοιχειώδους Ευκλείδειας γεωμετρίας είναι συνεπής και πλήρης κατά μια ορισμένη έννοια:υπάρχει ένας αλγόριθμος ο οποίος,για κάθε πρόταση,μπορεί να αποδειχθεί είτε αληθείς ή ψευδείς.(Αυτό δεν παραβιάζει το Θεώρημα του Gödel,επειδή η Ευκλείδεια γεωμετρία δεν μπορεί να περιγράψει μια επαρκή ποσότητα αριθμητικής για να εφαρμόσει το θεώρημα.)Αυτό είναι ισοδύναμο με τον όρο decidability των πραγματικών κλειστών πεδίων,των οποίων η στοιχειώδης Ευκλείδεια γεωμετρία αποτελεί μοντέλο.

Σημειώσεις - Παραπομπές

  1. Eves, τόμος 1,σελ.19
  2. Eves (1963),τόμος 1, σελ.10
  3. Eves,σελ.19
  4. Misner, Thorne και Wheeler (1973), σελ 47
  5. Πρόκλος ο Διάδοχος, Σχόλια στο πρώτο βιβλίο των Στοιχείων του Ευκλείδη, σελ.68. [13-17] (Commentary of Proclus on Euclid I) (pdf)(Ελληνικά)
  6. Bunt, 1981, σ. 162
  7. Wolfe, Harold E. (2007). Introduction to Non-Euclidean Geometry. Mill Press. σελ. 9. ISBN 1-4067-1852-1. 
  8. tr. Heath, pp. 195–202
  9. Lewis, Florence P. (Jan 1920). «History of the Parallel Postulate». The American Mathematical Monthly. 
  10. Ball, σελ.56
  11. Με τις υποθέσεις του Ευκλείδη είναι εύκολο να βρεθεί ένας τύπος για τον υπολογισμό του εμβαδού ενός τριγώνου ή ενός τετραγώνου.Παρ'όλα αυτά στη θεωρία συνόλων δεν είναι το ίδιο εύκολο να αποδειχθεί ότι το εμβαδόν ενός τετραγώνου είναι το άθροισμα των εμβαδών των μερών του. Βλέπε Μέτρο Λεμπέγκ και Banach-Tarski paradox.
  12. Ευκλείδης ,Βιβλίο 1 ,πρόταση 5,σελίδα 251
  13. Ευκλείδης ,Βιβλίο 1 ,πρόταση 32
  14. Heath σελίδα 135
  15. Heath ,σελίδα 318
  16. Ευκλείδης ,Βιβλίο 12 , πρόταση 2
  17. Ευκλείδης ,Βιβλίο 11, πρόταση 33
  18. Ball , σελίδα 66

Αναφορές

  • Bunt, Lucas N. H.· Jones, Phillip S.· Bedient, Jacl D. (1981). Οι ιστορικές ρίζες των στοιχειωδών μαθηματικών (PRENTICE-HALL, INC., Englewood Cliffs, New Jersey έκδοση). Αθήνα: Εκδόσεις Γ. Α. Πνευματικού.