Αρμονική συνάρτηση: Διαφορά μεταξύ των αναθεωρήσεων

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Περιεχόμενο που διαγράφηκε Περιεχόμενο που προστέθηκε
Djoanna1902 (συζήτηση | συνεισφορές)
προστέθηκαν κάποιες αρχικές πληροφορίες για την αρμονική συνάρτηση
 
Djoanna1902 (συζήτηση | συνεισφορές)
παρατηρήσεις για τις αρμονικές συναρτήσεις
Γραμμή 4: Γραμμή 4:


Αυτό συνήθως γράφεται ως: <math>\nabla\ ^2f=0</math> ή <math>\bigtriangleup f=0</math>.
Αυτό συνήθως γράφεται ως: <math>\nabla\ ^2f=0</math> ή <math>\bigtriangleup f=0</math>.

== Παρατηρήσεις ==
Το σύνολο των αρμονικών συναρτήσεων που ορίζονται σε ένα ανοικτό δοσμενο σύνολο U μπορεί να θεωρηθεί ως ο πυρήνας ενός τελεστή Λαπλας Δ και για το λόγο αυτό αποτελεί διανυσματικό χώρο πάνω στο R; το άθροισμα, η διαφορά και το βαθμωτό γινόμενο αρμονικών συναρτήσεων είναι επίσης αρμονικά.

Εάν f είναι μια αρμονική συνάρτηση στο σύνολο U, τότε όλες οι μερικές παράγωγοι της f θα είναι αρμονικές συναρτήσεις στο U.

Κατά κάποιο τρόπο, οι αρμονικές συναρτήσεις είναι ανάλογες των [[Ομομορφισμός|ολομορφικών]] συναρτήσεων.

Όλες οι αρμονικές συναρτήσεις είναι αναλυτικές, μπορούν δηλαδή να εκφραστούν τοπικά σα δυναμοσειρές. Αυτός είναι ένας γενικός κανόνας για τους ελλειπτικούς τελεστές, μεγαλύτερο παράδειγμα των οποίων αποτελεί ο [[Τελεστής Λαπλάς|τελεστής Λαπλας]].

Το ομοιόμορφο [[Όριο ακολουθίας|όριο]] μιας συγκλίνουσας [[Ακολουθία|ακολουθίας]] αρμονικών συναρτήσεων είναι κι αυτό αρμονικό. Αυτό ισχύει καθώς κάθε [[Συνέχεια συνάρτησης|συνεχής συνάρτηση]] που ικανοποιεί την ιδιότητα της μέσης τιμής είναι αρμονική.

Ας εξεταστεί η ακολουθία <math>fn(x,y)={1 \over n}\exp(nx)\cos(ny)</math> , ορισμένη στο <math>(-\infty,0)\times R</math>. Η ακολουθία αυτή είναι αρμονική και συγκλίνει ομοιόμορφα στη μηδενική συνάρτηση. Παρ' όλα αυτά πρέπει να σημειωθεί ότι οι [[Μερική παράγωγος|μερικές παράγωγοι]] της δεν συγκλίνουν στη μηδενική συνάρτηση(δηλαδή την παράγωγο της μηδενικής συνάρτησης). Με το παράδειγμα αυτό τονίζεται η σημασία που παίζει η ιδιότητα της μέσης τιμής και η συνέχεια για να υποστηριχθεί ότι το όριο είναι αρμονικό.

Έκδοση από την 08:46, 19 Μαΐου 2016

Στα μαθηματικά, τη μαθηματική φυσική και στη θεωρία των στοχαστικών διαδικασιών, μια αρμονική συνάρτηση είναι μια διπλά συνεχής διαφορική συνάρτηση f:U→R (όπου U ένα ανοικτό υποσύνολο του Rn), η οποία ικανοποιεί την εξίσωση Λαπλας π.χ

,παντού στο U.

Αυτό συνήθως γράφεται ως: ή .

Παρατηρήσεις

Το σύνολο των αρμονικών συναρτήσεων που ορίζονται σε ένα ανοικτό δοσμενο σύνολο U μπορεί να θεωρηθεί ως ο πυρήνας ενός τελεστή Λαπλας Δ και για το λόγο αυτό αποτελεί διανυσματικό χώρο πάνω στο R; το άθροισμα, η διαφορά και το βαθμωτό γινόμενο αρμονικών συναρτήσεων είναι επίσης αρμονικά.

Εάν f είναι μια αρμονική συνάρτηση στο σύνολο U, τότε όλες οι μερικές παράγωγοι της f θα είναι αρμονικές συναρτήσεις στο U.

Κατά κάποιο τρόπο, οι αρμονικές συναρτήσεις είναι ανάλογες των ολομορφικών συναρτήσεων.

Όλες οι αρμονικές συναρτήσεις είναι αναλυτικές, μπορούν δηλαδή να εκφραστούν τοπικά σα δυναμοσειρές. Αυτός είναι ένας γενικός κανόνας για τους ελλειπτικούς τελεστές, μεγαλύτερο παράδειγμα των οποίων αποτελεί ο τελεστής Λαπλας.

Το ομοιόμορφο όριο μιας συγκλίνουσας ακολουθίας αρμονικών συναρτήσεων είναι κι αυτό αρμονικό. Αυτό ισχύει καθώς κάθε συνεχής συνάρτηση που ικανοποιεί την ιδιότητα της μέσης τιμής είναι αρμονική.

Ας εξεταστεί η ακολουθία , ορισμένη στο . Η ακολουθία αυτή είναι αρμονική και συγκλίνει ομοιόμορφα στη μηδενική συνάρτηση. Παρ' όλα αυτά πρέπει να σημειωθεί ότι οι μερικές παράγωγοι της δεν συγκλίνουν στη μηδενική συνάρτηση(δηλαδή την παράγωγο της μηδενικής συνάρτησης). Με το παράδειγμα αυτό τονίζεται η σημασία που παίζει η ιδιότητα της μέσης τιμής και η συνέχεια για να υποστηριχθεί ότι το όριο είναι αρμονικό.