Θεωρία υπολογισιμότητας: Διαφορά μεταξύ των αναθεωρήσεων

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Περιεχόμενο που διαγράφηκε Περιεχόμενο που προστέθηκε
Ntina geor (συζήτηση | συνεισφορές)
Χωρίς σύνοψη επεξεργασίας
Ntina geor (συζήτηση | συνεισφορές)
Χωρίς σύνοψη επεξεργασίας
Γραμμή 49: Γραμμή 49:
Η θεωρία της αναδρομής στη Μαθηματική λογική παραδοσιακά εστιαζόταν στη σχετική υπολογισιμότητα, μια γενίκευση της υπολογισιμότητας Turing,που καθορίζεται χρησιμοποιώντας μια μηχανή χρησμού Turing που παρουσιάστηκε από τον Turing(1939). Μια μηχανή χρησμού Turing, είναι μία υποθετική συσκευή, η οποία εκτός από τις παραδοσιακές ενέργειες μιας μηχανής Turing, μπορεί να κάνει ερωτήσεις για ένα συγκεκριμένο σύνολο ακέραιων αριθμών.Η μηχανή oracle μπορεί να κάνει ερωτήσεις της μορφής <<Είναι το n στο σύνολο oracle;>> Κάθε ερώτηση θα απαντάται άμεσα σωστά ακόμη και αν το σύνολο δεν είναι υπολογίσιμο.
Η θεωρία της αναδρομής στη Μαθηματική λογική παραδοσιακά εστιαζόταν στη σχετική υπολογισιμότητα, μια γενίκευση της υπολογισιμότητας Turing,που καθορίζεται χρησιμοποιώντας μια μηχανή χρησμού Turing που παρουσιάστηκε από τον Turing(1939). Μια μηχανή χρησμού Turing, είναι μία υποθετική συσκευή, η οποία εκτός από τις παραδοσιακές ενέργειες μιας μηχανής Turing, μπορεί να κάνει ερωτήσεις για ένα συγκεκριμένο σύνολο ακέραιων αριθμών.Η μηχανή oracle μπορεί να κάνει ερωτήσεις της μορφής <<Είναι το n στο σύνολο oracle;>> Κάθε ερώτηση θα απαντάται άμεσα σωστά ακόμη και αν το σύνολο δεν είναι υπολογίσιμο.


Ανεπίσημα, ένα σύνολο ακεραίων αριθμών Α είναι αναγώγιμο σε ένα σύνολο Β αν υπάρχει μια μηχανή oracle που σωστά εάν οι αριθμοί είναι στο Α όταν εκτελούνται με το Β, όπως στο σύνολο oracle (σε αυτη την περίπτωση, το σύνολο Α επίσης λέγεται ότι είναι (σχετικά) υπολογίσιμο από το Β και το Β μπορεί να αναχθεί στο Α τότε το σύνολο λέγεται ότι έχουν τον ίδιο [[βαθμό Turing|βαθμό Turing]] (ονομάζεται επίσης βαθμός unsolvability). Ο βαθμός Turing ενός συνόλου δίνει ένα ακριβές μέτρο του πόσο μη-υπολογίσιμο είναι το σύνολο.
Ανεπίσημα, ένα σύνολο ακεραίων αριθμών Α είναι αναγώγιμο σε ένα σύνολο Β αν υπάρχει μια μηχανή oracle που σωστά εάν οι αριθμοί είναι στο Α όταν εκτελούνται με το Β, όπως στο σύνολο oracle (σε αυτη την περίπτωση, το σύνολο Α επίσης λέγεται ότι είναι (σχετικά) υπολογίσιμο από το Β και το Β μπορεί να αναχθεί στο Α τότε το σύνολο λέγεται ότι έχουν τον ίδιο [[βαθμό Turing]] (ονομάζεται επίσης βαθμός unsolvability). Ο βαθμός Turing ενός συνόλου δίνει ένα ακριβές μέτρο του πόσο μη-υπολογίσιμο είναι το σύνολο.


Τα φυσικά παραδείγματα των συνόλων που δεν είναι υπολογίσιμα, συμπεριλαμβανομένων πολλών διαφορετικών συνόλων που κωδικοποιούν παραλλαγές του προβλήματος τερματισμού, έχουν δύο κοινές ιδιότητες:
Τα φυσικά παραδείγματα των συνόλων που δεν είναι υπολογίσιμα, συμπεριλαμβανομένων πολλών διαφορετικών συνόλων που κωδικοποιούν παραλλαγές του προβλήματος τερματισμού, έχουν δύο κοινές ιδιότητες:

Έκδοση από την 16:40, 28 Ιουνίου 2014

Η Θεωρία της Υπολογισιμότητας ή Θεωρία της Αναδρομής, είναι ένας κλάδος της μαθηματικής λογικής, της πληροφορικής και της θεωρίας υπολογισμού που προήλθε από την έρευνα των υπολογίσιμων συναρτήσεων και του βαθμού Turing(=βαθμος μη επιλυσιμότητας) στα μέσα της δεκαετίας του 1930.

Τα βασικά ερωτήματα που απευθύνονται από την Θεωρία Αναδρομής είναι "Τι σημαίνει για μια συνάρτηση, ορισμένη στους φυσικούς αριθμούς,ότι είναι υπολογίσιμη;" και "Πώς μπορούν μη-υπολογίσιμες συναρτήσεις να κατηγοριοποιηθούν ιεραρχικά ανάλογα με το βαθμό μη-υπολογισιμότητας τους;". Η απάντηση σε αυτές τις ερωτήσεις οδήγησε σε μία πλούσια θεωρία η οποία ακόμη απασχολεί τους επιστήμονες.Το πεδίο των ερευνών αυτών έχει διευρυνθεί από τότε και πλέον περιέχει την έρευνα της γενικευμένης υπολογισιμότητας και προσδιορισιμότητας. Αξιοσημείωτη είναι η εφεύρεση του κεντρικού συνδυαστικού αντικειμένου της Αναδρομικής Θεωρίας,δηλαδή το Universal Turing Machine,το οποίο προηγείται και προκαθορίζει την εφεύρεση των σύγχρονων υπολογιστών. Ιστορικά ,η έρευνα των αλγοριθμικα undecidable συνόλων και συναρτήσεων προέκυψε από διάφορα μαθηματικά προβλήματα που κατέληγαν undecidable. Υπάρχουν πολλές εφαρμογές αυτής της θεωρίας σε άλλους κλάδους των μαθηματικών που δεν επικεντρώνονται απαραίτητα στην undecidability.Στις πρώτες εφαρμογές της περιλαμβάνονταν Higman's embedding theorem ,το οποίο συνδέει την Αναδρομική Θεωρία με την Θεωρία των Ομάδων που ήταν αποτέλεσνμα των Michael O. Rabin και Anatoly Maltsev στην αλγοριθμική παρουσίαση της άλγεβρας αλλά και την αρνητική λύση του Hilbert's Tenth Problem. Οι πιο νέες εφαρμογές περιλαμβάνουν την αλγοριθμική τυχαιότητα που αποτελεί έρευνα του Theodore Allen Slaman ,ο οποίος εφάρμωσε αναδρομικές-θεωρητικές μεθόδους για να επιλύσει προβλήματα Αλγεβρικής Γεωμετρίας και η νεότερη του δουλειά εστιάζεται στους κανονικούς αριθμούς για να λύσει προβλήματα της Αναλυτικής Θεωρίας Αριθμών.

Η Θεωρία της Αναδρομής συνδυάζεται με την Θεωρία των Αποδείξεων,με την Αποτελεσματική Περιγραφική Θεωρία Συνόλων, την Θεωρια Μοντέλων και την Αφηρημένη Άλγεβρα. Μάλιστα, Θα μπορούσαμε να χαρακτηρίσουμε οτι η Θεωρία της Πολυπλοκότητας είναι γέννημα της Αναδρομικής Θεωρίας καθώς και οι δύο μοιράζονται ίδιο τεχνικό εργαλείο ,δηλαδή το Turing Machine.

Πίνακας περιεχομένων 1 Υπολογίσιμα και μη σύνολα 2 Αναδιαρθρωτική Υπολογισιμότητα 3 Πεδία Έρευνας 3.1 Σχετική υπολογίστικότητα και βαθμοί Turing 3.2 Άλλες Αναγωγισιμότητες 3.3 Το Θεώρημα του Rice και η Αριθμητική Ιεραρχία 3.4 Αντίστροφα Μαθηματικά 3.5 Αριθμήσεις 3.6 Η μέθοδος της Προτεραιότητας 3.7 Το δικτυωτό των Αναδρομικά Αριθμήσιμων Συνόλων 3.8 Προβλήματα Αυτομορφισμού 3.9 Πολυπλοκότητα του Kolmogorov 3.10 Υπολογισμός Συχνότητας 3.11 Επαγωγικά Συμπεράσματα 3.12 Γενικεύσεις της υπολογισιμότητας Turing 3.13 Συνεχής θεωρία υπολογισιμότητας 4 Σχέσεις μεταξύ Προσδιορισιμότητας και Υπολογισιμότητας 5 Όνομα του υποκειμένου 6 Επαγγελματικές οργανώσεις 7 Δείτε επίσης 8 Σημειώσεις 9 Αναφορές 10 Επιπλέον Σύνδεσμοι

Υπολογίσιμα και μη υπολογίσιμα σύνολα Η Αναδρομή θεωρία προέρχεται από τη δεκαετία του 1930, με το έργο του Kurt Gödel , Alonzo Church , Alan Turing , Stephen Kleene και Emil Post.

Τα θεμελιώδη αποτελέσματα που αποκόμισαν οι ερευνητές εγκαθίδρυσαν την ανδιαρθρωτική υπολογισιμότητα ως σωστή επισημοποίησης της άτυπης ιδέα του αποτελεσματικού υπολογισμού. Αυτά τα αποτελέσματα οδήγησαν τον Stephen Kleene (1952) για να πλάσει τα δύο ονόματα "Church's thesis" (Kleene 1952:300) και «Turing's Thesis» (Kleene 1952:376). Σήμερα αυτά συχνά θεωρούνται ως μια ενιαία υπόθεση η Church–Turing thesis η οποία ορίζει ότι κάθε λειτουργία που είναι υπολογίσιμη από τον αλγόριθμο είναι μια υπολογίσιμη συνάρτηση . Αν και αρχικά σκεπτικός, από το 1946 ο Gödel τάχθηκε υπέρ αυτής της διατριβής:

"Ο Tarski τόνισε στην ομιλία του (και νομίζω δικαίως) τη μεγάλη σημασία της έννοιας της γενικής αναδρομής (ή του υπολογιστικού περιβάλλοντος του Turing). Μου φαίνεται ότι η σημασία αυτή σε μεγάλο βαθμό οφείλεται στο γεγονός ότι με αυτήν την έννοια για πρώτη φορά κατόρθωσε κάποιος να δώσει μια απόλυτη έννοια σε μια ενδιαφέρουσα επιστημολογική αντίληψη, δηλαδή χωρίς να εξαρτάται από τον φορμαλισμό που επιλέγεται. (Gοdel 1946 στο Davis 1965:84). Με τον ορισμό του αποτελεσματικού υπολογισμού ήρθαν οι πρώτοι αποδείξεις ότι υπάρχουν προβλήματα στα μαθηματικά που δεν μπορούν να αποφασιστούν αποτελεσματικά . Ο Chyrch (1936a, 1936b) και ο Turing (1936), εμπνευσμένοι από τεχνικές που χρησιμοποιούνται από τον Γκέντελ (1931) για να αποδείξουν τη μη πληρότητα των θεωρημάτων του , ανεξάρτητα κατέδειξαν ότι το Entscheidungs πρόβλημα δεν λύνεται αποτελεσματικά. Το αποτέλεσμα έδειξε ότι δεν υπάρχει αλγοριθμική διαδικασία που μπορεί σωστά να αποφασίσει αν κάποια αυθαίρετη μαθηματική πρόταση είναι αληθής ή ψευδής.

Πολλά προβλήματα των μαθηματικών έχει αποδειχθεί ότι είναι άλυτα αφού αυτά τα αρχικά παραδείγματα καθιερώθηκαν. Το 1947, ο Markov και ο Post δημοσίευσαν ανεξάρτητες μελέτες που δείχνουν ότι η λέξη πρόβλημα για υποσύνολα δεν μπορεί να λυθεί αποτελεσματικά. Επεκτείνοντας αυτό το αποτέλεσμα, ο Pyotr Novikov και ο William Boone έδειξαν ανεξάρτητα στη δεκαετία του 1950 ότι η λέξη πρόβλημα για τις ομάδες δεν είναι αποτελεσματικά επιλύσιμο: δεν υπάρχει αποτελεσματική διαδικασία η οποία, δοσμένης μιας λέξης σε μια παρουσιασμένη ομάδα , θα αποφασίσει εάν το στοιχείο που αντιπροσωπεύεται από τη λέξη είναι το στοιχείο της ταυτότητας της ομάδας. Το 1970, ο Yuri Matiyasevich αποδείχθηκε (χρησιμοποιώντας τα αποτελέσματα της Julia Robinson ) το Matiyasevich θεώρημα του , πράγμα που σημαίνει ότι το δέκατο πρόβλημα του Hilbert 's δεν έχει καμία αποτελεσματική λύση. Το πρόβλημα αυτό ρώτησε αν υπάρχει μια αποτελεσματική διαδικασία για να αποφασιστεί εάν μια εξίσωση Diophantine επί των ακεραίων έχει μια λύση στα ακέραιοι. Ο κατάλογος των μη λυμένων προβλημάτων παρέχει επιπλέον παραδείγματα των προβλημάτων χωρίς υπολογίσιμη λύση. Η μελέτη για το ποιες μαθηματικές κατασκευές μπορούν να πραγματοποιηθούν αποτελεσματικά μερικές φορές ονομάζεται αναδρομικά μαθηματικά. Το Εγχειρίδιο των Αναδρομικών Μαθηματικών (Ershov et al. 1998) καλύπτει πολλά από τα γνωστά αποτελέσματα σε αυτόν τον τομέα.


Πεδία Έρευνας

Κυρίως με την Θεωρία των Αναδρομικών Συνόλων και Συναρτήσεων ο χώρος έρευνας της Θεωρίας της Αναδρομής έχει επεκταθεί σε πολλές σχετικές θεωρίες :

Σχετική Υπολογισιμότητα και Βαθμός Turing

Η θεωρία της αναδρομής στη Μαθηματική λογική παραδοσιακά εστιαζόταν στη σχετική υπολογισιμότητα, μια γενίκευση της υπολογισιμότητας Turing,που καθορίζεται χρησιμοποιώντας μια μηχανή χρησμού Turing που παρουσιάστηκε από τον Turing(1939). Μια μηχανή χρησμού Turing, είναι μία υποθετική συσκευή, η οποία εκτός από τις παραδοσιακές ενέργειες μιας μηχανής Turing, μπορεί να κάνει ερωτήσεις για ένα συγκεκριμένο σύνολο ακέραιων αριθμών.Η μηχανή oracle μπορεί να κάνει ερωτήσεις της μορφής <<Είναι το n στο σύνολο oracle;>> Κάθε ερώτηση θα απαντάται άμεσα σωστά ακόμη και αν το σύνολο δεν είναι υπολογίσιμο.

Ανεπίσημα, ένα σύνολο ακεραίων αριθμών Α είναι αναγώγιμο σε ένα σύνολο Β αν υπάρχει μια μηχανή oracle που σωστά εάν οι αριθμοί είναι στο Α όταν εκτελούνται με το Β, όπως στο σύνολο oracle (σε αυτη την περίπτωση, το σύνολο Α επίσης λέγεται ότι είναι (σχετικά) υπολογίσιμο από το Β και το Β μπορεί να αναχθεί στο Α τότε το σύνολο λέγεται ότι έχουν τον ίδιο βαθμό Turing (ονομάζεται επίσης βαθμός unsolvability). Ο βαθμός Turing ενός συνόλου δίνει ένα ακριβές μέτρο του πόσο μη-υπολογίσιμο είναι το σύνολο.

Τα φυσικά παραδείγματα των συνόλων που δεν είναι υπολογίσιμα, συμπεριλαμβανομένων πολλών διαφορετικών συνόλων που κωδικοποιούν παραλλαγές του προβλήματος τερματισμού, έχουν δύο κοινές ιδιότητες:

1.Είναι αναδρομικά αριθμήσιμα, και

2.Κάθε ένα μπορεί να μεταφραστεί σε οποιοδήποτε άλλο μέσω πολλών-μίας μείωσης.Δηλαδή, δεδομένων τέτοιων συνόλων Α και Β, υπάρχει μία συνολική λειτουργία τέτοια ώστε Α={x:f(x)∈B} Αυτά τα σύνολα λέγεται ότι είναι πολλές-ένα ισοδύναμο (ή m-ισοδύναμο).

Οι πολλές-μια μειώσεις είναι «ισχυρότερες» από τις μειώσεις Turing: εάν ένα σύνολο Α είναι αναγώγιμο σε ένα σύνολο Β, τότε το Α μπορεί να αναχθεί σε B, αλλά το αντίστροφο δεν είναι πάντα εφικτό. Παρά το γεγονός ότι τα φυσικά παραδείγματα μη-υπολογίσιμων συνόλων είναι όλα πολλά-ένα ισοδύναμα, είναι δυνατόν να κατασκευαστούν αναδρομικά αριθμήσιμα σύνολα Α και Β, έτσι ώστε το Α να ανάγεται στο Β, αλλά όχι πολλά-ένα αναγώγιμο στο Β. Μπορεί να δειχθεί ότι κάθε αναδρομικά αριθμήσιμα σύνολο είναι πολλά-ένα αναγώγιμο στο πρόβλημα τερματισμού, και έτσι το πρόβλημα τερματισμού είναι το πιο περίπλοκο αναδρομικά αριθμήσιμα σύνολο σε σχέση με πολλές-ένα αναγωγές και με αναφορά προς την αναγωγή Turing. Ο Post (1944) ρώτησε αν κάθε αναδρομικά αριθμήσιμα σύνολο είναι είτε υπολογίσιμο ή Turing ισοδύναμο με το πρόβλημα τερματισμού, δηλαδή, αν δεν υπάρχει αναδρομικά αριθμήσιμα σύνολο με ένα βαθμό Turing ενδιάμεσο μεταξύ των δύο.

Ως ενδιάμεσα αποτελέσματα, ο Post όρισε ακέραιους τύπους αναδρομικά αριθμήσιμων συνόλων όπως τα απλά,υπεραπλά και υπέρ-υπεραπλά σύνολα. Ο Post έδειξε ότι αυτά τα σύνολα είναι αυστηρά μεταξύ των υπολογίσιμων συνόλων και του προβλήματος τερματισμού σε σχέση με την πολλές-μια αναγωγιμότητα. Ο Post έδειξε επίσης ότι ορισμένοι από αυτούς είναι απολύτως ενδιάμεσο προϊόν υπό άλλες έννοιες αναγωγιμότητας ισχυρότερες από ότι η αναγωγιμότητα του Turing . Αλλά ο Post άφησε ανοιχτό το κύριο πρόβλημα της ύπαρξης των αναδρομικά αριθμήσιμων συνόλων με ενδιάμεσο βαθμό Turing,το πρόβλημα αυτό έγινε γνωστό ως το πρόβλημα του Post. Μετά από δέκα χρόνια, ο Kleene και ο Post το 1954 έδειξαν ότι υπάρχουν ενδιάμεσοι βαθμοί Turing μεταξύ αυτών τα υπολογίσιμα σύνολα και το πρόβλημα τερματισμού, αλλά απέτυχαν να δείξουν ότι κάποια από αυτές τις μοίρες περιλαμβάνει κάποιο αναδρομικά αριθμήσιμα σύνολο. Πολύ σύντομα μετά από αυτό, ο Friedberg και ο Muchnik ανεξάρτητα έλυσαν το πρόβλημα του Post κατά τη διαπίστωση της ύπαρξης αναδρομικά αριθμήσιμων συνόλων με ενδιάμεσο βαθμό. Αυτή το πρωτοποριακό αποτέλεσμα άνοιξε μια ευρεία μελέτη των βαθμών Turing των αναδρομικά αριθμήσιμων συνόλων που αποδείχθηκε ότι έχουν μια πολύ περίπλοκη και μη τετριμμένη δομή. Υπάρχουν αμέτρητα πολλά σύνολα που δεν είναι αναδρομικά αριθμήσιμα, καθώς και η διερεύνηση των Turing βαθμών όλων των συνόλων είναι τόσο κεντρική στη θεωρία αναδρομής και τη διερεύνηση των αναδρομικά αριθμήσιμων βαθμών Turing. Πολλοί βαθμοί με ειδικές ιδιότητες κατασκευάστηκαν ως υπεράνοσοι χωρίς βαθμούς όπου κάθε λειτουργία υπολογίσιμη σε σχέση με αυτό το βαθμό είναι μεγενθυμένη από μια υπολογίσιμη συνάρτηση. Υψηλούς βαθμούς σε σχέση με τους οποίους μπορεί κανείς να υπολογίσει μια συνάρτηση f η οποία κυριαρχεί σε κάθε υπολογίσιμη συνάρτηση g,με την έννοια ότι υπάρχει μια σταθερά c, ανάλογη με τη g τέτοια ώστε g(x)<f(x) για κάθε x>c , τυχαίοι βαθμοί που περιέχουν αλγοριθμικά τυχαία σύνολα. 1-γενικοί βαθμοί ενός 1-γενικού συνόλου. Η μελέτη των αυθαίρετων (όχι κατ 'ανάγκη αναδρομικά αριθμήσιμων) βαθμών Turing περιλαμβάνει τη μελέτη του άλματος Turing. Λαμβάνοντας υπόψη ένα σύνολο A, το Turing άλμα του Α είναι ένα σύνολο των φυσικών αριθμών που κωδικοποιεί μια λύση για το πρόβλημα τερματισμού για τις μηχανές Turing που τρέχουν με χρησμό Α. Το Turing άλμα του κάθε σετ είναι πάντα με υψηλότερο βαθμό Turing από το αρχικό σύνολο, και ένα θεώρημα του Friedburg δείχνει ότι κάθε σύνολο που υπολογίζει το πρόβλημα τερματισμού μπορεί να ληφθεί ως Turing άλμα του ενός άλλου συνόλου. Το θεώρημα του Post, καθιερώνει μια στενή σχέση μεταξύ της λειτουργίας του άλματος Turing και της αριθμητικής ιεραρχίας , η οποία είναι μια κατάταξη ορισμένων υποσυνόλων των φυσικών αριθμών με βάση το πόσο μπορούν να οριστικοποιηθούν στην αριθμητική. Μεγάλο μέρος της πρόσφατης έρευνας για τους βαθμούς Turing έχει επικεντρωθεί στη συνολική δομή του συνόλου των βαθμών Turing και το σύνολο των βαθμών που περιέχουν αναδρομικά αριθμήσιμα σύνολα.Ένα βαθύ θεώρημα του Shore και Slaman (1999) αναφέρει ότι η χαρτογράφηση της συνάρτησης βαθμού x με το βαθμό του άλματος Turing της,είναι προσδιορίσιμο με τη μερική σειρά των βαθμών Turing. Μια πρόσφατη έρευνα από τους Ambos-Spies και Fejer (2006) παρέχει μια επισκόπηση της έρευνας και της ιστορικής εξέλιξης της.

Άλλες Αναγωγισιμότητες

Η εν εξελίξει τομέα της έρευνας στη θεωρία αναδρομής μελετά τις σχέσεις αναγωγισιμότητας πλην της αναγωγισιμότητας του Turing . Ο Post (1944) εισήγαγε αρκετές ισχυρές αναγωγισιμότητες, που ονομάστηκαν έτσι επειδή υπαινίσσονται τραπέζι αληθινής αναγωγισιμότητας. Μια μηχανή Turing για την εφαρμογή μιας ισχυρής αναγωγισιμότητας θα υπολογίσει μια συνολική συνάρτηση ανεξάρτητα από το με ποιό oracle παρουσιάζεται. Ασθενείς αναγωγές είναι εκείνες όπου η διαδικασία μείωσης δεν μπορεί να τερματιστεί για όλα τα σύνολα αριθμών. Η αναγωγή του Turing είναι ένα παράδειγμα.

Όπως τις:

Μία προς μία αναγωγισιμότητα

Το Α είναι το ένα προς ένα αναγώγιμο (ή 1-αναγώγιμο) στο Β αν υπάρχει μια συνολική υπολογίσιμη αμφιμονοσήμαντη συνάρτηση τέτοια ώστε κάθε n είναι στην Α αν και μόνο αν το f(n) είναι στο Β.

Πολλές προς μία αναγωγισιμότητα

Αυτό είναι ουσιαστικά η αναγωγή ένα προς ένα χωρίς τον περιορισμό ότι το f είναι αμφιμονοσήμαντο. Το Α είναι πολλοί προς ένα αναγώγιμο (ή m-αναγώγιμη) στο Β, αν υπάρχει μια συνολικά υπολογίσιμη συνάρτηση, έτσι ώστε κάθε n ανήκει στο A αν και μόνο αν το f(n) είναι στο Β.

Αναγωγισιμότητα του Πίνακα Αληθείας

Το Α είναι αληθινά αναγώγιμο σε πίνακα Β,αν το Α είναι αναγώγιμο κατά Turing στο Β μέσω της μηχανής Turing που υπολογίζει μια συνολική συνάρτηση. Λόγω του συμπαγούς του Cantor χώρου , αυτό είναι ισοδύναμο με το να πούμε ότι η μείωση παρουσιάζει έναν ενιαίο κατάλογο ερωτήσεων (εξαρτώμενο μόνο από την είσοδο) στο oracle ταυτόχρονα,και στη συνέχεια, έχοντας δει τις απαντήσεις τους είναι σε θέση να παράγει ένα αποτέλεσμα χωρίς να ζητήσει πρόσθετες ερωτήσεις,ανεξάρτητα με την απάντησης του oracle των αρχικών ερωτημάτων. Πολλές παραλλαγές του πίνακα αληθινής αναγωγής έχουν επίσης μελετηθεί. Περαιτέρω αναγωγές(θετική,διαζευκτική,συνδετική,γραμμική και οι αδύναμες και δυνατές μορφές τους) συζητούνται στο άρθρο Μείωση (θεωρία αναδρομής) . Η μεγάλη έρευνα για ισχυρές αναγωγές έγινε για να συγκρίνουν τις θεωρίες τους, τόσο για την κλάση όλων των αναδρομικά αριθμήσιμων συνόλων, καθώς και για την τάξη όλων των υποσυνόλων των φυσικών αριθμών. Επιπλέον, οι σχέσεις μεταξύ των αναγωγών έχει μελετηθεί. Για παράδειγμα, είναι γνωστό ότι κάθε βαθμός Turing είναι είτε ένας βαθμός από αληθινό πίνακα ή είναι η ένωση των απείρων πολλών βαθμών από αληθινούς πίνακες. Οι αναγωγές που είναι ασθενέστερες από ότι η αναγωγή του Turing (δηλαδή, αναγωγές που υπονοούνται από την αναγωγή του Turing) έχουν επίσης μελετηθεί.Οι πιο γνωστές είναι αριθμητικές αναγωγές και υπεραριθμητική αναγωγή.Αυτές οι αναγωγές συνδέονται στενά με την οριστικοποίηση πάνω από το καθιερωμένο μοντέλο της αριθμητικής.

Το Θεώρημα του Rice και η Αριθμητική Ιεραρχία

Ο Ράις έδειξε ότι για κάθε μη τετριμμένη κατηγορία C (η οποία περιέχει ορισμένα αλλά όχι όλα τα σύνολα) στο ενδεικτικό σύνολο E = {e: το e στο We είναι στο C} έχει την ιδιότητα ότι είτε το πρόβλημα τερματισμού ή το συμπλήρωμά της είναι πολλές -ένα αναγώγιμο στο E, δηλαδή, μπορεί να χαρτογραφηθούν με τη χρήση πολλών-μίας αναγωγής έως Ε (βλ. θεώρημα της Ράις για περισσότερες λεπτομέρειες). Όμως,πολλά από αυτά τα ενδεικτικά σύνολα είναι ακόμη πιο περίπλοκα από ότι το πρόβλημα τερματισμού.Τα εν λόγω είδη συνόλων μπορούν να ταξινομηθούν χρησιμοποιώντας την αριθμητική ιεραρχία.Για παράδειγμα,το ενδεικτικό σύνολο FIN της τάξης όλων των πεπερασμένων συνόλων είναι στο επίπεδο Σ2 , το ενδεικτικό σύνολο REC της τάξης όλων των αναδρομικών συνόλων είναι στο επίπεδο Σ3,το ενδεικτικό σύνολο COFIN όλων των ομοτελικών συνόλων είναι επίσης στο επιπέδου Σ3 και το ενδεικτικό σύνολο COMP της κατηγορίας όλων των ολοκληρωμένων συνόλων Turing στο Σ4.Αυτά τα επίπεδα ιεραρχίας ορίζονται επαγωγικά, Σn+1 και περιέχονται ακριβώς όλα τα σύνολα που είναι αναδρομικά αριθμήσιμα σε σχέση με το Σn.Το Σ1 περιέχει τα αναδρομικά αριθμήσιμα σύνολα.Τα ενδεικτικά σύνολα που δίνονται εδώ είναι πλήρεις ακόμη και για τα επίπεδά τους,δηλαδή όλα τα σύνολα σε αυτά τα επίπεδα μπορεί να είναι πολλά προς ένα αναγώγιμα στα ενδεικτικά δοσμένα σύνολα.

Αντίστροφα μαθηματικά

Κύριο άρθρο: Αντίστροφα μαθηματικά Το πρόγραμμα των αντιστρόφων Μαθηματικών ρωτά ποια αξιώματα υπαρκτά από τα σύνολα είναι αναγκαία για να αποδειχθεί συγκεκριμένα θεωρήματα των μαθηματικών σε υποσυστήματα της αριθμητικής της δεύτερης τάξης.Η μελέτη αυτή ξεκίνησε από τον Harvey Friedman και μελετήθηκε λεπτομερώς από τον Stephen Simpson και άλλους.Ο Simpson (1999) δίνει μια λεπτομερή συζήτηση για το πρόγραμμα.Τα αξιώματα της ύπαρξης των συνόλων υπό ερώτηση αντιστοιχούν ανεπίσημα σε αξιώματα που λένε ότι το δυναμοσύνολο των ακέραιων αριθμών είναι κλειστό υπό διάφορες έννοιες αναγωγής.Το πιο αδύναμο τέτοιο αξίωμα που έχει μελετηθεί σε αντίστροφα μαθηματικά είναι η αναδρομική κατανόηση,η οποία αναφέρει ότι το δυναμοσύνολο των ακεραίων είναι κλειστό υπό την αναγωγή Turing.

Αρίθμηση

Η αρίθμηση είναι μια απαρίθμηση των συναρτήσεων.Έχει δύο παραμέτρους,e και χ και εξάγει την τιμή της συνάρτησης e στην αρίθμηση για την είσοδο x. Οι αριθμήσεις μπορεί να είναι μερικά-αναγώγιμες αν και ορισμένα από τα μέλη τους είναι συνολικά αναγώγιμα, δηλαδή, υπολογίσιμες συναρτήσεις.Παραδεκτές αριθμήσεις είναι εκείνες στις οποίες όλες οι άλλες μπορούν να μεταφραστούν.Μια αρίθμηση Friedberg (που ονομάζεται από αυτόν που την ανακάλυψε)είναι η ένα προς ένα αρίθμηση όλων των επιμέρους-αναδρομικών συναρτήσεων,είναι κατ 'ανάγκην μια μη παραδεκτή αρίθμηση.Μεταγενέστερη έρευνα ασχολήθηκε επίσης με αριθμήσεις από άλλες κατηγορίες όπως τις τάξεις των αναδρομικά αριθμήσιμων συνόλων. Ο Goncharov ανακάλυψε για παράδειγμα μια κατηγορία αναδρομικά αριθμήσιμων συνόλων για τα οποία οι αριθμήσεις εμπίπτουν σε δύο κατηγορίες ακριβώς σε σχέση με τους αναδρομικούς ισομορφισμούς.

Η μέθοδος της Προτεραιότητας Για περαιτέρω επεξήγηση, βλ. την ενότητα πρόβλημα δημοσίευση και τη μέθοδο προτεραιότητας στο άρθρο βαθμός Turing. Το πρόβλημα του Post λύθηκε με μια μέθοδο που ονομάζεται η μέθοδος κατά προτεραιότητας,μια απόδειξη χρήση αυτής της μεθόδου ονομάζεται επιχείρημα προτεραιότητας.Αυτή η μέθοδος χρησιμοποιείται κυρίως για την κατασκευή αναδρομικά αριθμήσιμων συνόλων με συγκεκριμένες ιδιότητες.Για να χρησιμοποιηθεί αυτή η μέθοδος,οι επιθυμητές ιδιότητες του συνόλου που πρόκειται να κατασκευαστεί χωρίστηκαν σε έναν άπειρο κατάλογο των στόχων,που είναι γνωστός ως απαιτήσεις, έτσι ώστε ικανοποιώντας όλες τις απαιτήσεις θα κάνει το κατσκευασμένο σύνολο να έχει τις επιθυμητές ιδιότητες.Κάθε απαίτηση έχει εκχωρηθεί σε ένα φυσικό αριθμό που αντιπροσωπεύει την προτεραιότητα της απαίτησης, έτσι το 0 αποδίδεται στην πιο σημαντική προτεραιότητα,το 1 στη δεύτερη πιο σημαντική,και ούτω καθεξής.Το σύνολο στη συνέχεια κατασκευάζεται σε στάδια, σε κάθε στάδιο προσπαθεί να ικανοποιήσει μία ή περισσότερες από τις απαιτήσεις, είτε με την προσθήκη αριθμών στο σύνολο ή με την απαγόρευση των αριθμών από το σύνολο, έτσι ώστε το τελικό σύνολο να ικανοποιεί την απαίτηση.Μπορεί να συμβεί να ικανοποιείται μία απαίτηση και αυτό να προκαλεί τη μη ικανοποίηση μιας άλλης,η σειρά προτεραιότητας χρησιμοποιείται για να αποφασιστεί τι πρέπει να γίνει σε μια τέτοια περίπτωση. Τα επιχειρήματα Προτεραιότητας έχουν χρησιμοποιηθεί για να λύσουν πολλά προβλήματα στη θεωρία αναδρομής, και έχουν ταξινομηθεί σε μια ιεραρχία με βάση την πολυπλοκότητά τους (Soare 1987).Επειδή τα περίπλοκα επιχειρήματα προτεραιότητας μπορεί να είναι τεχνικά και δύσκολα να ακολουθηθούν, παραδοσιακά θεωρείται σκόπιμο να αποδειχτούν τα αποτελέσματα χωρίς επιχειρήματα προτεραιότητας, ή να διαπιστώσουμε αν τα αποτελέσματα που αποδείχθηκαν με επιχειρήματα προτεραιότητας μπορούν επίσης να αποδειχθούν χωρίς αυτά.Για παράδειγμα, ο Kummer δημοσίευσε ένα έγγραφο σε μια απόδειξη για την ύπαρξη της αρίθμηση του Friedberg χωρίς τη χρήση της μεθόδου προτεραιότητας.


  • Το δικτυωτό των Αναδρομικά Αριθμήσιμων Συνόλων
  • Προβλήματα Αυτομορφισμού
  • Πολυπλοκότητα του Kolmogorov
  • Υπολογισμός Συχνότητας
  • Επαγωγικά Συμπεράσματα
  • Γενικεύσεις της υπολογισιμότητας Turing
  • Συνεχής θεωρία υπολογισιμότητας

Σχέσεις μεταξύ Προσδιορισιμότητας και Υπολογισιμότητας

Υπάρχουν στενοί δεσμοί μεταξύ του βαθμού Turing ενός συνόλου φυσικών αριθμών και της δυσκολίας (απο πλευράς αριθμητικης ιεραρχίας) προσδιορισμού αυτού του συνόλου χρησιμοποιώντας Λογική Πρώτου Βαθμού.Αυτή η σχέση έγινε εφικτή με την βοήθεια του θεωρήματος του Post.Μία λιγότερο ακριβής απόδειξη παρουσιάστηκε απο τον Κουρτ Γκέντελ με τις αποδείξεις του στα θεωρήματα ολοκληρωσιμότητας και μη ολοκληρωσιμότητας.οι αποδείξεις του Γκέντελ εξηγούν ότι ένα σύνολο λογικών συνεπειών μίας δυναμικής Λογικής Πρώτου Βαθμού είναι ένα αναδρομικά αριθμήσιμο σύνολο και αν η θεωρία ειναι αρκετά ισχυρή τότε αυτό το σύνολο θα είναι μη υπολογίσιμο.Παρομοίως το Θεώρημα της μη-Προσδιορισιμότητας του Τάρσκι Similarly, Tarski's μπορεί να ερμηνευτεί τόσο από την άποψη της προσδιορισιμότητας όσο και της υπολογισιμότητας.

Η Θεωρία της Αναδρομής συνδεέται με την αριθμητικη δευτέρου τάξης, μια τυπική θεωρία των φυσικών αριθμών και συνόλων φυσικών αριθμών.Το γεγονός οτι κάποια σύνολα ειναι υπολογίσιμα και κάποια σχετικά υπολογίσιμα συχνά σημαίνει ότι αυτά τα σύνολα μπορούν να οριστούν σε πιο αδύναμα υποσυστήματα αριθμητικής δευτέρου τάξης.Το πρόγραμμα των αντίστροφων reverse mathematics χρησιμοποιεί αυτά τα υποσυστήματα για να μετρήσει την μη υπολογισιμότητα σε κάποια πολύ γνωστά μαθηματικά θεωρήματα . .Ο Simpson (1999) αναφέρεται σε πολλές πτυχές της αριθμητικής δεύτερης τάξης και reverse mathematics.

Ο κλάδος της Θεωρίας Αποδείξεων περιλαμβάνει την μελέτη της αριθμητικής δεύτερης ταξης και τα Αξιώματα Πεάνο όπως επίσης και τυπικές θεωρίες των φυσικών πιο αδύναμες από τα Αξιώματα Πεάνο.Μία μέθοδος κατηγοριοποιήσης της ισχύς αυτών των αδύναμων συστημάτων γίνεται με τον χαρακτηρισμό για ποιές υπολογίσμες συναρτήσεις το σύστημα μπορει να αποδειχθεί πλήρες(βλ. Fairtlough and Wainer (1998)).Για παράδειγμα ,στην θεμελιωδώς αναδρομική αριθμητική οποιαδήποτε συνάρτηση που ειναι πλήρης ειναι θεμελιωδώς αναδρομική ,ενώ τα Αξιώματα Πεάνο αποδεικνύουν ότι συναρτήσεις όπως η συνάρτηση του Ackermann ,οι οποίες δεν είναι θεμελιωδώς αναδρομικές ,είναι πλήρης,Επομένως δεν αποδεικνύεται για όλες τις πλήρης-υπολογίσιμες συναρτήσεις οτι ειναι πλήρης και στην Αριθμητική Πεάνο.Μάλιστα μία τέτοια συνάρτηση δίνεται απο το θεώρημα Goodstein.

Βιβλιογραφία

Προπτυχιακά Έντυπα
  • S. B. Cooper, 2004. Computability Theory, Chapman & Hall/CRC. ISBN 1-58488-237-9
  • N. Cutland, 1980. Computability, An introduction to recursive function theory, Cambridge University Press. ISBN 0-521-29465-7
  • Y. Matiyasevich, 1993. Hilbert's Tenth Problem, MIT Press. ISBN 0-262-13295-8
Ανώτερα 'Εντυπα
  • S. Jain, D. Osherson, J. Royer and A. Sharma, 1999. Systems that learn, an introduction to learning theory, second edition, Bradford Book. ISBN 0-262-10077-0
  • S. Kleene, 1952. Introduction to Metamathematics, North-Holland (11th printing; 6th printing added comments). ISBN 0-7204-2103-9
  • M. Lerman, 1983. Degrees of unsolvability, Perspectives in Mathematical Logic, Springer-Verlag. ISBN 3-540-12155-2.
  • Andre Nies, 2009. Computability and Randomness, Oxford University Press, 447 pages. ISBN 978-0-19-923076-1.
  • P. Odifreddi, 1989. Classical Recursion Theory, North-Holland. ISBN 0-444-87295-7
  • P. Odifreddi, 1999. Classical Recursion Theory, Volume II, Elsevier. ISBN 0-444-50205-X
  • H. Rogers, Jr., 1967. The Theory of Recursive Functions and Effective Computability, second edition 1987, MIT Press. ISBN 0-262-68052-1 (paperback), ISBN 0-07-053522-1
  • G Sacks, 1990. Higher Recursion Theory, Springer-Verlag. ISBN 3-540-19305-7
  • S. G. Simpson, 1999. Subsystems of Second Order Arithmetic, Springer-Verlag. ISBN 3-540-64882-8
  • R. I. Soare, 1987. Recursively Enumerable Sets and Degrees, Perspectives in Mathematical Logic, Springer-Verlag. ISBN 0-387-15299-7.
Έγγραφα Ερευνών και Συλλογές
  • K. Ambos-Spies and P. Fejer, 2006. "Degrees of Unsolvability." Unpublished preprint.
  • H. Enderton, 1977. "Elements of Recursion Theory." Handbook of Mathematical Logic, edited by J. Barwise, North-Holland (1977), pp. 527–566. ISBN 0-7204-2285-X
  • Y. L. Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel, 1998. Handbook of Recursive Mathematics, North-Holland (1998). ISBN 0-7204-2285-X
  • M. Fairtlough and S. Wainer, 1998. "Hierarchies of Provably Recursive Functions". In Handbook of Proof Theory, edited by S. Buss, Elsevier (1998).
  • R. I. Soare, 1996. Computability and recursion, Bulletin of Symbolic Logic v. 2 pp. 284–321.
Ερευνητικές Εργασίες και Συλλογές
  • Burgin, M. and Klinger, A. "Experience, Generations, and Limits in Machine Learning." Theoretical Computer Science v. 317, No. 1/3, 2004, pp. 71–91
  • A. Church, 1936a. "An unsolvable problem of elementary number theory." American Journal of Mathematics v. 58, pp. 345–363. Reprinted in "The Undecidable", M. Davis ed., 1965.
  • A. Church, 1936b. "A note on the Entscheidungsproblem." Journal of Symbolic Logic v. 1, n. 1, and v. 3, n. 3. Reprinted in "The Undecidable", M. Davis ed., 1965.
  • M. Davis, ed., 1965. The Undecidable—Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions, Raven, New York. Reprint, Dover, 2004. ISBN 0-486-43228-9
  • R. M. Friedberg, 1958. "Three theorems on recursive enumeration: I.

Decomposition, II. Maximal Set, III. Enumeration without repetition." The Journal of Symbolic Logic, v. 23, pp. 309–316.

  • Gold, E. Mark (1967), Language Identification in the Limit 10, Information and Control, pp. 447–474
  • L. Harrington and R. I. Soare, 1991. "Post's Program and incomplete recursively enumerable sets", Proceedings of the National Academy of Sciences of the USA, volume 88, pages 10242—10246.
  • C. Jockusch jr, "Semirecursive sets and positive reducibility", Trans. Amer. Math. Soc. 137 (1968) 420-436
  • S. C. Kleene and E. L. Post, 1954. "The upper semi-lattice of degrees of recursive unsolvability." Annals of Mathematics v. 2 n. 59, 379–407.
  • Moore, C. (1996). "Recursion theory on the reals and continuous-time computation". Theoretical Computer Science. CiteSeerX: 10.1.1.6.5519.
  • J. Myhill, 1956. "The lattice of recursively enumerable sets." The Journal of Symbolic Logic, v. 21, pp. 215–220.
  • Orponen, P. (1997). "A survey of continuous-time computation theory". Advances in algorithms, languages, and complexity. CiteSeerX: 10.1.1.53.1991.
  • E. Post, 1944, "Recursively enumerable sets of positive integers and their decision problems", Bulletin of the American Mathematical Society, volume 50, pages 284–316.
  • E. Post, 1947. "Recursive unsolvability of a problem of Thue." Journal of Symbolic Logic v. 12, pp. 1–11. Reprinted in "The Undecidable", M. Davis ed., 1965.
  • Shore, Richard A.; Slaman, Theodore A. (1999), "Defining the Turing jump", Mathematical Research Letters 6: 711–722, ISSN 1073-2780, MR 1739227
  • T. Slaman and W. H. Woodin, 1986. "Definability in the Turing degrees." Illinois J. Math. v. 30 n. 2, pp. 320–334.
  • R. I. Soare, 1974. "Automorphisms of the lattice of recursively enumerable sets, Part I: Maximal sets." Annals of Mathematics, v. 100, pp. 80–120.
  • A. Turing, 1937. "On computable numbers, with an application to the Entscheidungsproblem." Proceedings of the London Mathematics Society, ser. 2 v. 42, pp. 230–265. Corrections ibid. v. 43 (1937) pp. 544–546. Reprinted in "The Undecidable", M. Davis ed., 1965. PDF from comlab.ox.ac.uk
  • A. Turing, 1939. "Systems of logic based on ordinals." Proceedings of the London Mathematics Society, ser. 2 v. 45, pp. 161–228. Reprinted in "The Undecidable", M. Davis ed., 1965.

Επιπλέον Σύνδεσμοι