Ακετόνη: Διαφορά μεταξύ των αναθεωρήσεων

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Περιεχόμενο που διαγράφηκε Περιεχόμενο που προστέθηκε
Vchorozopoulos (συζήτηση | συνεισφορές)
Vchorozopoulos (συζήτηση | συνεισφορές)
Γραμμή 557: Γραμμή 557:
\mathrm{CH_3COCH_3 + CH_3Cl + KOH \xrightarrow{} \frac{6}{7} CH_3CH_2COCH_3 + KCl + H_2O + \frac{1}{7}} </math> [[Αρχείο:2 2-dimethyloxirane.png|80 px]]
\mathrm{CH_3COCH_3 + CH_3Cl + KOH \xrightarrow{} \frac{6}{7} CH_3CH_2COCH_3 + KCl + H_2O + \frac{1}{7}} </math> [[Αρχείο:2 2-dimethyloxirane.png|80 px]]
</div>
</div>

== Χρήσεις ==

Σχεδόν στο ένα τρίτο του πλανήτη η προπανόνη χρησιμοποιείται ως ένας διαλύτης και στο ένα τέταρτο αυτού καταναλώνεται, μέσω της [[κυανυδρίνες|κυανυδρίνης]] της, ως πρόδρομος για το [[μεθυλακρυλικό οξύ]] (και τα [[πολυμερή]] του)<ref name=r1>[http://www.sriconsulting.com/WP/Public/Reports/acetone/ Acetone], World Petrochemicals report, January 2010</ref>.

=== Ως διαλύτης ===

Η προπανόνη είναι ένας καλός διαλύτης για τα περισσότερα πλασρικά και τις συνθετικές υφάνσιμες ύλες, περιλαμβάνοντας αυτά που χρησιμοποιούνται σε εργαστήρια για φιάλες [[πολυστυρένιο|πολυστυρένιου]], [[πολυκαβονικά|πολυκαβονικών]] ή και κάποιους τύπους [[πολυπροπυλένιο|πολυπροπυλένιου]]<ref>[http://www.nalgenelabware.com/techdata/chemical/ NALGENE Labware – Technical Data]. Nalgenelabware.com. Retrieved on 2012-11-26.</ref>. Είναι ιδανικό για αραίωση ρητινών υαλοβάμβακα, καθαρισμό εργαλείων χειρισμού υαλοβάμβακα και διάλυση εποξείδια και υπερκόλλες πριν σκληρίνουν. Χρησιμοποιήθηκε ως πτητικός διαλύτης για κάποιες μπογιές και βερνίκια. Επίσης, χρησιμοποιήθηκε ως ισχυρός [[γράσσο|απογρασσωτής]]. Είναι χρήσιμη για την προετοιμασία [[μέταλλα|μετάλλων]] πριν από το βάψιμο. Επίσης, αραιώνει πολυεστερικές ρητίνες, πολυβινυλίου και διάφοερες κόλλες. Είναι επίσης χρήσιμη για πολύ αξιόπιστες εφαρμογές συγκόλλησης αλλά και αφαίρεσης της περίσσειας ρητινών συγκόλλησης, όταν η συγκόλληση έχει τελειώσει. Χρησιμεύει για να αποφευχθούν αρνητικά φαινόμενα από την παραμονή βρώμικης κόλλας σε επαφή με τα υλικά που συγκολλήθηκαν.

Ακόμη, η προπαανόνη χρησιμοποιήθηκε ως ένας διαλύτης για τη [[φαρμακευτική βιομηχανία]] και ως ένα μετουσιωτικό σε καθαρή [[αιθανόλη]]<ref>{{Cite book
| isbn = 0-8247-8210-0, 9780824782108
| page = 32
| last = Weiner
| first = Myra L.
| coauthors = Lois A. Kotkoskie
| title = Excipient Toxicity and Safety
| year = 1999
}}</ref>. Η προπανόνη χρησιμοποιείται ακόμη ως ένα [[έκδοχο]] σε ορισμένα [[φάρμακα]]<ref>[http://www.accessdata.fda.gov/scripts/cder/iig/index.cfm Inactive Ingredient Search for Approved Drug Products], FDA/Center for Drug Evaluation and Research</ref>.

Παρόλο που είναι η προπανόνη η ίδια εύφλεκτη, χρησιμοποιήθηκε ως ένας διαλύτης για την ασφαλέστερη μεταφορά και αποθήκευση [[αιθίνιο|αιθίνιου]], γιατί το τελευταίο δεν μπορεί να συμπιεστεί με ασφάλεια αν βρίσκεται σε καθαρή μορφή. Δοχεία που κατασκευάζονται από ένα πορώδες υλικό πρώτα γεμίζονται με προπανόνη, μέσα στην οποία διαλύεται στη συνέχεια το αιθίνιο. Σημειώνεται ότι ένα λίτρο προπανόνης διαλύει περίπου 250 λίτρα αιθινίου<ref>[http://www.msha.gov/alerts/hazardsofacetylene.htm Mine Safety and Health Administration (MSHA) – Safety Hazard Information – Special Hazards of Acetylene]. Msha.gov. Retrieved on 2012-11-26.</ref><ref>[http://www.aga.com/web/web2000/com/WPPcom.nsf/pages/History_Acetylene_1 History – Acetylene dissolved in acetone]. Aga.com. Retrieved on 2012-11-26.</ref>.


== Αναφορές και σημειώσεις ==
== Αναφορές και σημειώσεις ==

Έκδοση από την 16:49, 25 Φεβρουαρίου 2013

Ακετόνη
Γενικά
Όνομα IUPAC Ακετόνη
Άλλες ονομασίες Ακετόνη
β-κετοπροπάνιο
2-οξοπροπάνιο
Διμεθυλοκετόνη
Διμεθυλοφορμαλδεΰδη
Χημικά αναγνωριστικά
Χημικός τύπος C3H6O
Μοριακή μάζα 58,08 amu
Σύντομος
συντακτικός τύπος
CH3COCH3
Συντομογραφίες Me2CO
DMK
Αριθμός CAS 67-64-1
SMILES O=C(C)C
InChI 1/C3H6O/c1-3(2)4/h1-2H3
Αριθμός EINECS 200-662-2
Αριθμός RTECS AL31500000
PubChem CID 180
ChemSpider ID 175
Δομή
Διπολική ροπή 2,91 D
Μήκος δεσμού 152 pm (C-C)
121,3 pm (C=O)
110,3[ pm (C-H)
Είδος δεσμού σ (2sp3-2sp2) (C-C)
σ ((2sp2-2sp2) (C=O)
π (2p-2p) (C=O)
(2sp3-1s) (C-H)
Πόλωση δεσμού 19% C+ O- (C=O)
3% C- H+ (C-H)
Γωνία δεσμού 116° (C-C-C)
Μοριακή γεωμετρία τριγωνική επίπεδη στο καρβονύλιο
Ισομέρεια
Ισομερή θέσης 8
Φυσικές ιδιότητες
Σημείο τήξης −94,9 °C
Σημείο βρασμού 56,53 °C
Πυκνότητα 792,5 kg/m3
Διαλυτότητα
στο νερό
Αναμίξιμη
Ιξώδες 0,3075 cP (20 °C)
Δείκτης διάθλασης ,
nD
1,35900 (20 °C)
Εμφάνιση Άχρωμο υγρό
Χημικές ιδιότητες
pKa 24,2
Ελάχιστη θερμοκρασία
ανάφλεξης
-17 °C
Σημείο αυτανάφλεξης 465 °C
Επικινδυνότητα
Εύφλεκτη (F)
Ερεθιστική (Xi)
Φράσεις κινδύνου R11, R36, R66, R67
Φράσεις ασφαλείας (S2), S9, S16, S26
Κίνδυνοι κατά
NFPA 704

3
1
0
 
Εκτός αν σημειώνεται διαφορετικά, τα δεδομένα αφορούν υλικά υπό κανονικές συνθήκες περιβάλλοντος (25°C, 100 kPa).

Η προπανόνη ή ακετόνη ή 2-οξοπροπάνιο ή β-κετοπροπάνιο ή διμεθυλοκετόνη ή διμεθυλοφορμαλδεΰδη είναι μια χημική ένωση με χημικό τύπο C3H6O και σύντομο συντακτικό τύπο CH3COCH3 ή συντομογραφικά Me2CO ή DMK (DiMethylKetone). Είναι η απλούστερη από τις κετόνες. Στην όψη είναι ένα άχρωμο εύφλεκτο υγρό. Η προπανόνη είναι αναμίξιμη με το νερό και εξυπηρετεί ως ένας σημαντικός διαλύτης και τυπικό καθαριστικό σκευών σε χημικά εργαστήρια. Πάνω από 3.000.000 τόννοι προπανόνη παράγονται κάθε χρόνο παγκοσμίως, κυρίως ως πρώτη ύλη για πολυμερή[1]. Είναι επίσης ένα οικιακό προϊόν, που χρησιμοποιείται κυρίως για το καθάρισμα ή και ξεβάψιμο των νυχιών από όζες και βερνίκια. Είναι επίσης μια συνηθισμένη πρώτη ύλη για την ανοικοδόμηση πιο σύνθετων (από αυτήν) οργανικών ενώσεων. Αναπαραγωγικά πειράματα τοξικότητας καταδεικνύουν ότι έχει χαμηλό δυναμικό τοξικότητας για να προκαλέσει προβλήματα αναπαραγωγής. Στην πραγματικότητα, το ίδιο ανθρώπινο σώμα αυξάνει φυσικά τη συγκέντρωση προπανόνης σε έγκυες γυναίκες, θηλάζουσες μητέρες και στα παιδιά, επειδή οι μεγαλύτερες ενεργειακές τους ανάγκες οδηγούν στη αύξηση των επιπέδων παραγωγής προπανόνης. Η ιατρική κοινότητα χρησιμοποιεί πλέον κετογενικές δίετες που αυξάνουν την προπανόνη στο σώμα για να μειώσουν τα επιληπτικά επισόδεια σε βρέφη και παιδιά που υποφέρουν από επιληψία.

Ονοματολογία

Η ονομασία «προπανόνη» προέρχεται από την ονοματολογία κατά IUPAC. Συγκεκριμένα, το πρόθεμα «προπ-» δηλώνει την παρουσία τριών (3) ατόμων άνθρακα ανά μόριο της ένωσης, το ενδιάμεσο «-αν-» δείχνει την παρουσία μόνο απλών δεσμών μεταξύ ατόμων άνθρακα στο μόριο και η κατάληξη «-όνη» φανερώνει ότι περιέχει ένα καρβονύλιο (>C=O), που δεν βρίσκεται στην άκρη του μορίου, ως κύρια χαρακτηριστική ομάδα, δηλαδή ότι πρόκειται για κετόνη.

Η ονομασία «2-οξοπροπάνιο» προέρχεται από την «ονοματολογία υποκατάστασης», κατά την οποία η ένωση υποτίθεται ότι είναι προπάνιο, του οποίου δύο άτομα υδρογόνου, του #2 ατόμου άνθρακα, υποκαθίσταται από ένα άτομο οξυγόνου, που συνδέεται με διπλό δεσμό.

Δομή

Δεσμοί[2]
Δεσμός τύπος δεσμού ηλεκτρονική δομή Μήκος δεσμού Ιονισμός
C-H σ 2sp3-1s 110,3 pm 3% C- H+
C-O σ 2sp3-2sp3 152 pm 19% C+ O-
C=O σ 2sp2-2sp2 121,3 pm 19% C+ O-
π 2p-2p
C-C σ 2sp3-2sp2 151 pm
Στατιστικό ηλεκτρικό φορτίο[3]
O (C=O) -0,38
C,#1,#3 -0,09
H (H-C) +0,03
C#2 +0,38

Ισομέρεια

Με βάση το χημικό της τύπο, C3H6O, έχει τα ακόλουθα οκτώ (8) ισομερή:

  1. 1-προπεν-1-όλη (ελάσσων ταυτομερές της προπανάλης) με σύντομο συντακτικό τύπο CH3CH=CHOH (σε δύο (2) γεωμετρικά ισομερή).
  2. 1-προπεν-2-όλη ή αλλυλική αλκοόλη με σύντομο συντακτικό τύπο CH2=CHCH2OH.
  3. 1-προπενόλη (ελάσσων ταυτομερές της προπανόνης) με σύντομο συντακτικό τύπο CH3C(OH)=CH2.
  4. Βινυλομεθυλαιθέρας ή μεθοξυαιθένιο με σύντομο συντακτικό τύπο CH3OCH=CH2.
  5. Κυκλοπροπανόλη με σύντομο συντακτικό τύπο .
  6. Προπανάλη (κύριο ταυτομερές) της προπεν-1-όλης-1) με σύντομο συντακτικό τύπο CH3CH2CHO.
  7. Οξετάνιο με σύντομο συντακτικό τύπο .
  8. Μεθυλοξιράνιο με σύντομο συντακτικό τύπο

Παραγωγή

Βιοσύνθεση

Μικρές ποσότητες προπανόνης παράγονται στο (ανθρώπινο, αλλά όχι μόνο) σώμα με αποκαρβοξυλίωση κετοξέων. Αυτή η διεργασία, που ονομάζεται κέτωση, μπορεί να ενισχυθεί με ειδικές δίαιτες, που περιλαμβάνουν συνδυασμό υψηλής λήψης λιπών και χαμηλής λήψης σακχάρων. Στην περίπτωση αυτή η προπανόνη παράγεται από τους ιστούς του σώματος, και στη συνέχεια, υπό ορισμένες συνθήκες υγείας, όπως ο αλκοολισμός και σακχαρώδης διαβήτης, μπορεί να προκαλέσει κετοξείδωση. Ανεξέλεκτη κέτωση μπορεί να οδηγήσει σε μια απότομη, και εν δυνάμει θανατηφόρα, αύξηση της οξύτητας στο αίμα. Εφόσον είναι ένα παραπροϊόν ζύμωσης, η προπανόνη μπορεί να παραχθεί ως παραπροϊόν της βιομηχανίας απόσταξης (αιθανόλης).

Με καταλυτική οξείδωση κουμένιου

Με καταλυτική οξείδωση κουμένιου [PhCH(CH3)2] παράγεται φαινόλη (PhOH) και προπανόνη[1]:

Με καταλυτική οξείδωση προπενίου

Με καταλυτική οξείδωση προπενίου, με τη μέθοδο Wacker-Ηoechst, παράγεται προπανόνη[4]:

Με καταλυτική οξείδωση προπανίου

Με καταλυτική οξείδωση προπανίου (C3H8) παράγεται (κυρίως) προπανόνη:

Με οργανομαγνησιακές ενώσεις

1. Με επίδραση μεθυλομαγνησιοαλογονίδιου (CH3MgX) σε αιθανικό αλκυλεστέρα (CH3COOR) παράγεται προπανόνη[5]:

2. Με επίδραση μεθυλομαγνησιοαλογονίδιου (CH3MgX) σε αιθανονιτρίλιο παράγεται προπανόνη[6]:

Με οξείδωση 2-προπανόλη

Με οξείδωση 2-προπανόλης [CH3CH(OH)CH3] παράγεται προπανόνη[7]:

Με προσθήκη ύδατος σε προπίνιο

Με ενυδάτωση προπινίου (CH3C ≡ CH) παράγεται αρχικά η ταυτομερής 2-προπενόλη, που ταυτομερίζεται σε προπανόνη[8]:

Με πυρόλυση αιθανικού ασβεστίου

Με πυρόλυση αιθανικού ασβεστίου [(CH3COO)2Ca] παράγεται προπανόνη[9]:

Με οζονόλυση 2,3-διμεθυλο-2-βουτένιου

Με οζονόλυση 2,3-διμεθυλο-2-βουτένιου παράγεται προπανόνη[10]:

Με επίδραση υπερμαγγανικού καλίου σε 2,3-διμεθυλοβουτένιο-2

Με επίδραση υπερμαγγανικού καλίου σε 2,3-διμεθυλο-2-βουτένιο παράγεται προπανόνη[11]:

  • Υπερβολικά έντονες οξειδωτικές συνθήκες μπορούν να οδηγήσουν σε παραπέρα οξείδωση, με διάσπαση της προπανόνης, σχηματίζοντας μεθανικό οξύ και αιθανικό οξύ. Δείτε παρακάτω στην ενότητα «Χημικές ιδιότητες και παράγωγα».

Με επίδραση υπεριωδικού οξέος σε 2,3-διμεθυλοβουτανοδιόλη-2,3

Με επίδραση υπεριωδικού οξέος σε 2,3-διμεθυλοβουτανοδιόλη-2,3 παράγεται προπανόνη[12]:

Χημικές ιδιότητες και παράγωγα

Ταυτομέρεια με 2-προπενόλη

Η προπανόνη βρίσκεται πάντα σε χημική ισορροπία με την ταυτομερή της 2-προπενόλη. Μπορεί να καταλυθεί προς την επιθυμητή κατεύθυνση με παρουσία οξέων ή βάσεων[13]:

Αναγωγή προς 2-προπανόλη

Μπορεί να αναχθεί προς 2-προπανόλη με τις ακόλουθες μεθόδους[14]

1. Με λιθιοαργιλιοϋδρίδιο (LiAlH4):

2. Με καταλυτική υδρογόνωση:

Αναγωγή προς προπάνιο

Μπορεί να αναχθεί προς προπάνιο με την αντίδραση Clemensen[15]

Οξείδωση προς 2-οξοπροπανάλη

1. Μπορεί να οξειδωθεί προς 2-οξοπροπανάλη με χρήση διοξειδίου του σεληνίου[16]

2. Μπορεί να οξειδωθεί προς 2-οξοπροπανάλη μέσω νιτρώδωσης, δηλαδή επίδρασης νιτρώδους οξέος[17]

Προσθήκη ύδατος

Με προσθήκη ύδατος σε προπανόνη παράγεται, σε χημική ισορροπία, η μη απομονώσιμη ασταθής 2,2-προπανοδιόλη[18]:

Προσθήκη 1,2-αιθανοδιόλης

Με προσθήκη 1,2-αιθανοδιόλης παράγεται 2,2-διμεθυλο-1,3-διοξολάνιο[19]:

Προσθήκη 1,2-αιθανοδιθειόλης

Με προσθήκη 1,2-αιθανοδιθειόλης παράγεται 2,2-διμεθυλο-1,3-διθειολάνιο[20]:

Αντιδράσεις με αζωτούχες ενώσεις

Αντιδρά με αρκετά είδη αζωτούχων ενώσεων του γενικού τύπου NH2A, όπου το A μπορεί να είναι υδρογόνο, αλκύλιο, υδροξύλιο, αμινοξάδα και διάφορα άλλα. Με βάση το γενικό τύπο η γενική αντίδραση είναι η ακόλουθη[21]:

  • Μερικά σχετικά παραδείγματα αμέσως παρακάτω:

1. Με αμμωνία παράγεται 2-προπανιμίνη. Προκύπτει από την παραπάνω γενική με A = H:

2. Με πρωτοταγείς αμίνες (RNH2) παράγεται Ν-αλκυλο-2-προπανιμίνη. Προκύπτει από την παραπάνω γενική με A = R:

3. Με υδροξυλαμίνη παράγεται 2-προπανοξίμη. Προκύπτει από την παραπάνω γενική με A = OH:

4. Με υδραζίνη παράγεται αρχικά ισοπροπυλιδενυδραζίνη και με περίσσεια προπανάλης διισοπροπυλιδενυδραζίνη. Προκύπτει από την παραπάνω γενική με A = NH2:

5. Με φαινυλυδραζίνη παράγεαι 1-ισοπροπυλιδενο-2-φαινυλυδραζίνη. Προκύπτει από την παραπάνω γενική με A = NHPh::

6. Με υδραζινομεθαναμίδιο παράγεται (2-προπυλιδενυδραζινο)μεθαναμίδιο. Προκύπτει από την παραπάνω γενική με A = NCONH2:

Συμπύκνωση με δευτεροταγείς αμίνες

Με επίδραση δευτεροταγούς αμίνης (RNHR') παράγεται αρχικά 1-(διαλκυλαμινο)-2-προπανόλη, η οποία στη συνέχεια με αφυδάτωση μπορεί να δώσει Ν,Ν-διαλκυλο-2-προπεναμίνη[22]:

Αλδολική συμπύκνωση

Με επίδραση βάσης έχουμε τη λεγόμενη αλδολική συμπύκνωση, η οποία όταν γίνεται με τον εαυτό της, παράγεται αρχικά 4-μεθυλο-4-υδροξυ-2-πεντανόνη, η οποία στη συνέχεια με αφυδάτωση μπορεί να δώσει 4-μεθυλο-2-πεντεν-3-όνη[23]:

Συμπύκνωση με «ενεργές» μεθυλενομάδες

Με την επίδραση «ενεργών» μεθυλενομάδων, δηλαδή ενώσεων του γενικού τύπου XCH2Y, όπου X,Y ηλεκτραρνητικές ομάδες όπως π.χ. κυανομάδα (CN), καρβαλκοξυομάδα (COOR), έχουμε την αντίδραση Knoevenagel[24]:

Συμπύκνωση με α-αλεστέρες

Με επίδραση α-αλεστέρων (R'CHXCOOR) έχουμε την αντίδραση Darzen, κατά την οποία τελικά παράγεται 1-καρβαλκοξυ-2,2-διμεθυλοξιράνιο. Π.χ. με αλαιθανικό αλκυλεστέρα (XCH2COOR) έχουμε[25]:

Επίδραση φωσφοροϋλιδίων

Με επίδραση φωσφοροϋλιδίων [Ph3P+C-(R)R'] έχουμε τη λεγόμενη αντίδραση Wittig, με την οποία παράγεται 1,1-διαλκυλο-2-μεθυλ-1-οπροπένιο[26]:

Προσθήκη διαφόρων πυρηνόφιλων αντιδραστηρίων

Είναι δυνατή η προσθήκη διαφόρων πυρηνόφιλων αντιδραστηρίων στο διπλό δεσμό C=O που περιέχει η προπανόνη. Π.χ.:[27]:

1. Με προσθήκη υδροκυανίου παράγεται αρχικά μεθυλοϋδροξυπροπανονιτρίλιο, από το οποίο με υδρόλυση μπορεί να παραχθεί μεθυλοϋδροξυπροπανικό οξύ:

2. Με προσθήκη όξινου θειικού νατρίου παράγεται 2-υδροξυ-2-προπανοσουλφονικό οξύ:

3. Με προσθήκη αλκυλομαγνησιοαλογονιδίου (RMgX) παράγεται 2-αλκυλο-2-προπανόλη:

4. Με προσθήκη πενταχλωριούχου φωσφόρου παράγεται 2,2-διχλωροπροπάνιο:

Αλογόνωση

Με επίδραση αλογόνου (X2) έχουμε προσθήκη του στην 2-προπενόλη. Παράγεται αρχικά η ασταθής 1,2-διαλο-2-προπανόλη, που αφυδραλογονώνεται σχηματίζοντας τελικά αλοπροπανόνη[28]:

Επίδραση διαζωμεθανίου

Με επίδραση διαζωμεθάνιου παράγεται 2,2-διμεθυλοξιράνιο[29]:

Επίδραση υδραζωτικού οξέος

Με επίδραση υδραζωτικού οξέος (αντίδραση Achmidt) παράγεται N-μεθυλαιθαναμίδιο[30]:

Αντίδραση Stracker

Με επίδραση υδροκυανίου (HCN) και αμμωνίας (NH3) σε προπανάλη παράγεται αρχικά 2-αμινο-2-μεθυλοπροπανονιτρίλιο και στη συνέχεια, με υδρόλυση, 2-αμινο-2-μεθυλοπροπανικό οξύ (ένα μη πρωτεϊνικό αμινοξύ)[31]:

Φωτοχημική προσθήκη σε αλκένια

Με επίδραση προπανόνης σε αιθένιο σχηματίζεται φωτοχημικά 2,2-διμεθυλοξετάνιο (αντίδραση Paterno–Büchi)[32] [33]:

Επίδραση ισχυρών οξειδωτικών συνθηκών

Με ισχυρά οξειδωτικά μέσα και δραστικές συνθήκες, είναι δυνατή η οξείδωση της προπανόνης προς διοξείδιο του άνθρακα και αιθανικό οξύ[34]:

  • Ενδιάμεσα σχηματίζεται και μεθανικό οξύ, το οποίο όμως είναι ευαίσθητο στην τυχόν περίσσεια υπερμσγγανικού καλίου:

Αλοφορμική αντίδραση

Με επίδραση αλογόνου (X2) σε αλκαλικό περιβάλλον σε προπανόνη, έχουμε τη λεγόμενη αλοφορμική αντίδραση, και παράγονται αλοφόρμιο και αιθανικό άλας[35]:

Οξείδωση Baeyer - Villiger

Με οξείδωση Baeyer - Villiger από καρβονικό υπεροξύ (RCO3H) παράγονται αιθανικός μεθυλεστέρας και καρβονικό οξύ[36]:

Παραγωγή διόλης

Με επίδραση νατρίου ή μαγνησίου σε προπανόνη παράγεται τελικά 2,3-διμεθυλο-2,3-βουτανοδιόλη[37]:

Προσθήκη ορθοφορμικών εστέρων

Με προσθήκη ορθοφορμικού εστέρα [(RO)3CH, όπου τα αλκύλια R, όχι απαραίτητα ίδια] έχουμε το σχηματισμό 2,2-διαλκοξυπροπάνιου[38]:

Συμπύκνωση με εστέρες

Με επίδραση καρβονικών εστέρων (RCOOR, όπου τα αλκύλια R, όχι απαραίτητα ίδια) σε προπανόνη, παρουσία αιθανολικού νατρίου ή νατραμιδίου παράγονται αλκοξυπροπανόνη και αλκοόλη[39]:

Επίδραση καρβενίων

Παρεμβολή καρβενίων, π.χ. με μεθυλενίου παράγονται βουτανόνη και 2,2-διμεθυλοξιράνιο[40]:

Χρήσεις

Σχεδόν στο ένα τρίτο του πλανήτη η προπανόνη χρησιμοποιείται ως ένας διαλύτης και στο ένα τέταρτο αυτού καταναλώνεται, μέσω της κυανυδρίνης της, ως πρόδρομος για το μεθυλακρυλικό οξύ (και τα πολυμερή του)[41].

Ως διαλύτης

Η προπανόνη είναι ένας καλός διαλύτης για τα περισσότερα πλασρικά και τις συνθετικές υφάνσιμες ύλες, περιλαμβάνοντας αυτά που χρησιμοποιούνται σε εργαστήρια για φιάλες πολυστυρένιου, πολυκαβονικών ή και κάποιους τύπους πολυπροπυλένιου[42]. Είναι ιδανικό για αραίωση ρητινών υαλοβάμβακα, καθαρισμό εργαλείων χειρισμού υαλοβάμβακα και διάλυση εποξείδια και υπερκόλλες πριν σκληρίνουν. Χρησιμοποιήθηκε ως πτητικός διαλύτης για κάποιες μπογιές και βερνίκια. Επίσης, χρησιμοποιήθηκε ως ισχυρός απογρασσωτής. Είναι χρήσιμη για την προετοιμασία μετάλλων πριν από το βάψιμο. Επίσης, αραιώνει πολυεστερικές ρητίνες, πολυβινυλίου και διάφοερες κόλλες. Είναι επίσης χρήσιμη για πολύ αξιόπιστες εφαρμογές συγκόλλησης αλλά και αφαίρεσης της περίσσειας ρητινών συγκόλλησης, όταν η συγκόλληση έχει τελειώσει. Χρησιμεύει για να αποφευχθούν αρνητικά φαινόμενα από την παραμονή βρώμικης κόλλας σε επαφή με τα υλικά που συγκολλήθηκαν.

Ακόμη, η προπαανόνη χρησιμοποιήθηκε ως ένας διαλύτης για τη φαρμακευτική βιομηχανία και ως ένα μετουσιωτικό σε καθαρή αιθανόλη[43]. Η προπανόνη χρησιμοποιείται ακόμη ως ένα έκδοχο σε ορισμένα φάρμακα[44].

Παρόλο που είναι η προπανόνη η ίδια εύφλεκτη, χρησιμοποιήθηκε ως ένας διαλύτης για την ασφαλέστερη μεταφορά και αποθήκευση αιθίνιου, γιατί το τελευταίο δεν μπορεί να συμπιεστεί με ασφάλεια αν βρίσκεται σε καθαρή μορφή. Δοχεία που κατασκευάζονται από ένα πορώδες υλικό πρώτα γεμίζονται με προπανόνη, μέσα στην οποία διαλύεται στη συνέχεια το αιθίνιο. Σημειώνεται ότι ένα λίτρο προπανόνης διαλύει περίπου 250 λίτρα αιθινίου[45][46].

Αναφορές και σημειώσεις

  1. 1,0 1,1 Stylianos Sifniades, Alan B. Levy, “Acetone” in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005. Σφάλμα αναφοράς: Μη έγκυρη ετικέτα <ref> • όνομα " Ullmann " ορίζεται πολλές φορές με διαφορετικό περιεχόμενο
  2. Τα δεδομένα προέρχονται εν μέρει από το «Table of periodic properties of thw Ellements», Sagrent-Welch Scientidic Company και Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, Σελ. 34.
  3. Υπολογισμένο βάση του ιονισμού από τον παραπάνω πίνακα
  4. Jiro Tsuji, Hideo Nagashima, and Hisao Nemoto (1990), «General Synthetic Method for the preparation of Methyl Ketones from Terminal Olefins: 2-Decanone», Org. Synth., http://www.orgsyn.org/orgsyn/orgsyn/prepContent.asp?prep=cv7p0137 ; Coll. Vol. 7: 137 
  5. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.216, §9.3.1α.
  6. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.216, §9.3.1β.
  7. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.216, §9.3.2.
  8. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.216, §9.3.3.
  9. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.217, §9.3.4α.
  10. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.217, §9.3.5α.
  11. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.217, §9.3.5β.
  12. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.217, §9.3.6α.
  13. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.218, §9.5.1.
  14. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.218, §9.5.2.
  15. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.152, §6.2.6β.
  16. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.218, §9.5.4.
  17. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.222, §9.7.7.
  18. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.218, §9.5.5α.
  19. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.218, §9.5.5β.
  20. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.218, §9.5.5β.
  21. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.218-219, §9.5.6.
  22. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.219, §9.5.7.
  23. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.219, §9.5.8. και SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, σελ. 268, §15.3.8
  24. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.219, §9.5.9.
  25. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.219, §9.5.10.
  26. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.219, §9.5.11.
  27. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.220, §9.5.12.
  28. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.220, §9.5.13.
  29. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.220, §9.5.14.
  30. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.220, §9.5.15.
  31. «Ασκήσεις και προβλήματα Οργανικής Χημείας» Ν. Α. Πετάση 1982, σελ. 329, §14.2.2.
  32. E. Paterno, G. Chieffi (1909). «.». Gazz. Chim. Ital. 39: 341. 
  33. G. Büchi, Charles G. Inman, and E. S. Lipinsky (1954). «Light-catalyzed Organic Reactions. I. The Reaction of Carbonyl Compounds with 2-Methyl-2-butene in the Presence of Ultraviolet Light». Journal of the American Chemical Society 76 (17): 4327–4331. doi:10.1021/ja01646a024. 
  34. «Ασκήσεις και προβλήματα Οργανικής Χημείας» Ν. Α. Πετάση 1982, σελ. 223, §9.7.1.
  35. «Ασκήσεις και προβλήματα Οργανικής Χημείας» Ν. Α. Πετάση 1982, σελ. 223, §9.7.2.
  36. «Ασκήσεις και προβλήματα Οργανικής Χημείας» Ν. Α. Πετάση 1982, σελ. 223, §9.7.3.
  37. «Ασκήσεις και προβλήματα Οργανικής Χημείας» Ν. Α. Πετάση 1982, σελ. 223, §9.7.4.
  38. «Ασκήσεις και προβλήματα Οργανικής Χημείας» Ν. Α. Πετάση 1982, σελ. 223, §9.7.6.
  39. «Ασκήσεις και προβλήματα Οργανικής Χημείας» Ν. Α. Πετάση 1982, σελ. 223, §9.7.8.
  40. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 155, §6.7.3.
  41. Acetone, World Petrochemicals report, January 2010
  42. NALGENE Labware – Technical Data. Nalgenelabware.com. Retrieved on 2012-11-26.
  43. Weiner, Myra L. (1999). Excipient Toxicity and Safety. σελ. 32. ISBN 0-8247-8210-0, 9780824782108 Check |isbn= value: invalid character (βοήθεια).  Unknown parameter |coauthors= ignored (|author= suggested) (βοήθεια)
  44. Inactive Ingredient Search for Approved Drug Products, FDA/Center for Drug Evaluation and Research
  45. Mine Safety and Health Administration (MSHA) – Safety Hazard Information – Special Hazards of Acetylene. Msha.gov. Retrieved on 2012-11-26.
  46. History – Acetylene dissolved in acetone. Aga.com. Retrieved on 2012-11-26.

Πηγές

  • Γ. Βάρβογλη, Ν. Αλεξάνδρου, Οργανική Χημεία, Αθήνα 1972
  • Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991
  • SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999
  • Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982
  • Δημήτριου Ν. Νικολαΐδη: Ειδικά μαθήματα Οργανικής Χημείας, Θεσσαλονίκη 1983.
CC-BY-SA
Μετάφραση
Στο λήμμα αυτό έχει ενσωματωθεί κείμενο από το λήμμα Acetone της Αγγλικής Βικιπαίδειας, η οποία διανέμεται υπό την GNU FDL και την CC-BY-SA 4.0. (ιστορικό/συντάκτες).