Συνάρτηση ζήτα Ρήμαν: Διαφορά μεταξύ των αναθεωρήσεων

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Περιεχόμενο που διαγράφηκε Περιεχόμενο που προστέθηκε
Oxy86 (συζήτηση | συνεισφορές)
Χωρίς σύνοψη επεξεργασίας
Oxy86 (συζήτηση | συνεισφορές)
Χωρίς σύνοψη επεξεργασίας
Γραμμή 1: Γραμμή 1:
Η '''συνάρτηση ζήτα''' ή '''συνάρτηση ζήτα του Riemann''', από το όνομα του μαθηματικού [[Μπέρναρντ Ρίμαν]] είναι μια συνάρτηση με ιδιαίτερη σημασία στη [[θεωρία αριθμών]], λόγω της σχέσης της με την κατανομή των [[πρώτος αριθμός|πρώτων αριθμών]]. Έχει επίσης εφαρμογές σε άλλα πεδία, όπως η [[φυσική]], η [[θεωρία πιθανοτήτων]] και η εφαρμοσμένη [[στατιστική]].
Η '''συνάρτηση ζήτα''' ή '''συνάρτηση ζήτα του Riemann''', από το όνομα του Γερμανού μαθηματικού [[Μπέρναρντ Ρίμαν]] είναι μια συνάρτηση με ιδιαίτερη σημασία στη [[θεωρία αριθμών]], λόγω της σχέσης της με την κατανομή των [[πρώτος αριθμός|πρώτων αριθμών]]. Έχει επίσης εφαρμογές σε άλλα πεδία, όπως η [[φυσική]], η [[θεωρία πιθανοτήτων]] και η εφαρμοσμένη [[στατιστική]].


== Ορισμός ==
== Ορισμός ==
[[Image:zeta.png|thumb|Η ζήτα συνάρτηση για πραγματικούς μεγαλύτερους του 1.]]
[[Image:zeta.png|thumb|Η ζήτα συνάρτηση για πραγματικούς μεγαλύτερους του 1.]]
Η '''συνάρτηση ζήτα''' <math>\zeta(s)</math> είναι συνάρτηση μιας [[μιγαδικός αριθμός|μιγαδικής μεταβλητής]] s και ορίζεται από την ακόλουθη άπειρη σειρά, αρκεί ο μιγαδικός αριθμός s να έχει πραγματικό μέρος > 1:
Η '''συνάρτηση ζήτα''' <math>\zeta(s)</math> είναι συνάρτηση μιας [[μιγαδικός αριθμός|μιγαδικής μεταβλητής]] s και ορίζεται από την ακόλουθη άπειρη σειρά, αρκεί ο μιγαδικός αριθμός s να έχει πραγματικό μέρος μεγαλύτερο της μονάδας:


:<math>\zeta(s)=\sum_{k=1}^\infty \frac{1}{k^s}</math>
:<math>\zeta(s)=\sum_{k=1}^\infty \frac{1}{k^s}</math>
Γραμμή 9: Γραμμή 9:
Στην περιοχή <math>\{s \in\mathbb{C}: Re(s) > 1\}</math>, αυτή η σειρά συγκλίνει και ορίζει μια συνάρτηση αναλυτική σε αυτή την περιοχή.
Στην περιοχή <math>\{s \in\mathbb{C}: Re(s) > 1\}</math>, αυτή η σειρά συγκλίνει και ορίζει μια συνάρτηση αναλυτική σε αυτή την περιοχή.


Η συνάρτηση ζήτα συνδέεται με τους [[πρώτος αριθμός|πρώτους αριθμούς]] με την εξής σχέση (''γινόμενο του [[Ευκλείδης|Ευκλείδη]]''):
Η συνάρτηση ζήτα συνδέεται με τους [[πρώτος αριθμός|πρώτους αριθμούς]] με την εξής σχέση, που ανακαλύφθηκε από τον [[Λέοναρντ Όιλερ|Λέοναρντ Όιλερ]]:
:<math>\zeta(s)=\prod_{p\in\mathbb{P}} \frac{1}{1-p^{-s}}, \qquad s\in\mathbb{C}: Re(s) > 1,</math>
:<math>\zeta(s)=\prod_{p\in\mathbb{P}} \frac{1}{1-p^{-s}}, \qquad s\in\mathbb{C}: Re(s) > 1,</math>
όπου <math>\mathbb{P}</math> το σύνολο όλων των πρώτων αριθμών.
όπου <math>\mathbb{P}</math> το σύνολο όλων των πρώτων αριθμών.


Αν ο s είναι ακέραιος, τότε ο παραπάνω τύπος του Όιλερ μπορεί να χρησιμοποιηθεί για τον υπολογισμό της πιθανότητας s το πλήθος τυχαία επιλεγμένοι αριθμοί να είναι μεταξύ τους [[σχετικά πρώτοι|σχετικά πρώτοι]]. Η πιθανότητα αυτή αποδεικνύεται ότι ισούται με 1/ζ(s).
== Επεκτάσεις ==
== Επεκτάσεις ==



Έκδοση από την 10:24, 12 Νοεμβρίου 2008

Η συνάρτηση ζήτα ή συνάρτηση ζήτα του Riemann, από το όνομα του Γερμανού μαθηματικού Μπέρναρντ Ρίμαν είναι μια συνάρτηση με ιδιαίτερη σημασία στη θεωρία αριθμών, λόγω της σχέσης της με την κατανομή των πρώτων αριθμών. Έχει επίσης εφαρμογές σε άλλα πεδία, όπως η φυσική, η θεωρία πιθανοτήτων και η εφαρμοσμένη στατιστική.

Ορισμός

Η ζήτα συνάρτηση για πραγματικούς μεγαλύτερους του 1.

Η συνάρτηση ζήτα είναι συνάρτηση μιας μιγαδικής μεταβλητής s και ορίζεται από την ακόλουθη άπειρη σειρά, αρκεί ο μιγαδικός αριθμός s να έχει πραγματικό μέρος μεγαλύτερο της μονάδας:

Στην περιοχή , αυτή η σειρά συγκλίνει και ορίζει μια συνάρτηση αναλυτική σε αυτή την περιοχή.

Η συνάρτηση ζήτα συνδέεται με τους πρώτους αριθμούς με την εξής σχέση, που ανακαλύφθηκε από τον Λέοναρντ Όιλερ:

όπου το σύνολο όλων των πρώτων αριθμών.

Αν ο s είναι ακέραιος, τότε ο παραπάνω τύπος του Όιλερ μπορεί να χρησιμοποιηθεί για τον υπολογισμό της πιθανότητας s το πλήθος τυχαία επιλεγμένοι αριθμοί να είναι μεταξύ τους σχετικά πρώτοι. Η πιθανότητα αυτή αποδεικνύεται ότι ισούται με 1/ζ(s).

Επεκτάσεις

Η συνάρτηση ζήτα μπορεί να επεκταθεί αναλυτικά στην περιοχή σε μία μερομορφική συνάρτηση στην περιοχή αυτή με έναν πόλο τάξης 1 στο . Η επεκταμένη αυτή συνάρτηση έιναι:

όπου με δηλώνεται το ακέραιο μέρος του .

Η ζήτα συνάρτηση μπορεί να επεκταθεί αναλυτικά σε όλο το σε μία μερομορφική συνάρτηση στην περιοχή αυτή με έναν πόλο τάξής 1 στο . Για η επεκταμένη αυτή συνάρτηση έιναι:

όπου αριθμός Bernoulli και πολυώνυμο Bernoulli.

Σχέσεις

Συναρτησιακή εξίσωση της ζήτα συνάρτησης (functional equation):

όπου η γάμμα συνάρτηση.

H συνάρτηση γάμμα (ή ακριβέστερα η αναλυτική προέκτασή της στο ) έχει πόλους τάξης 1 στο . Η ζήτα συνάρτηση μηδενίζεται συνεπώς για .

Υπόθεση του Riemann

Η υπόθεση του Riemann είναι ένα από τα άλυτα προβλήματα της θεωρίας αριθμών. Δηλώνει ότι εκτός από τις τιμές η συνάρτηση ζήτα μηδενίζεται μόνο για με .

Από την συναρτησιακή εξίσωση της συνάρτησης ζήτα και τις ιδιότητες της συνάρτησης γάμα προκύπτει ότι η συνάρτηση ζήτα για με μηδενίζεται μόνο για . Στην περιοχή προφανώς δε μηδενίζεται. Επίσης αποδυκνείεται ότι για . Συνεπώς οι υπόλοιπες τιμές που τη μηδενίζουν πρέπει να ικανοποιούν .