Μοναδιαίο διάνυσμα

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Μετάβαση στην πλοήγηση Πήδηση στην αναζήτηση

Στην γραμμική άλγεβρα, μοναδιαίο διάνυσμα είναι κάθε διάνυσμα με μήκος (ή νόρμα) την μονάδα , δηλαδή κάθε διάνυσμα με .[1]:157[2]:32 Για παράδειγμα, το διάνυσμα που έχει Ευκλείδειο μήκος .

Για κάθε μη-μηδενικό διάνυσμα , το κανονικοποιημένο του μοναδιαίο διάνυσμα είναι το διάνυσμα , το οποίο είναι παράλληλο στο .[1]:157[2]:33

Παραδείγματα[Επεξεργασία | επεξεργασία κώδικα]

Παραδείγματα μοναδιαίων διανυσμάτων στο . Όλα ανήκουν στον κύκλο με κέντρο και ακτίνα .
  • Το διάνυσμα , καθώς έχει Ευκλείδειο μήκος .
  • Το διάνυσμα , καθώς έχει Ευκλείδειο μήκος .
  • Στο κάθε διάνυσμα ανήκει στον μοναδιαίο κύκλο. Αυτό ισχύει γιατί ένα διάνυσμα είναι μοναδιαίο αν και μόνο αν , δηλαδή αν και μόνο αν ανήκει στον κύκλο με κέντρο και ακτίνα .
  • Για κάθε φυσικό αριθμό , το διάνυσμα είναι μοναδιαίο καθώς
.
  • Τα διανύσματα της κανονικής βάσης του είναι μοναδιαία, καθώς έχουν μήκος για κάθε . Πιο γενικά, τα διανύσματα κάθε ορθοκανονικής βάσης είναι μοναδιαία.

Παραπομπές[Επεξεργασία | επεξεργασία κώδικα]

  1. 1,0 1,1 Χαραλάμπους, Χ.· Φωτιάδης, Α. (2015). Μία εισαγωγή στη γραμμική άλγεβρα για τις θετικές επιστήμες. Αθήνα: ΣΕΑΒ. ISBN 978-960-603-273-8. 
  2. 2,0 2,1 Μπράτσος, Α. (2015). Μαθήματα ανωτέρων μαθηματικών. Αθήνα: ΣΕΑΒ. ISBN 978-960-603-030-7.