Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Ακολουθεί o κατάλογος ολοκληρωμάτων (αντιπαράγωγων ολοκληρωμάτων) των υπερβολικών συναρτήσεων .[ 1] [ 2] Για έναν πλήρη κατάλογο ολοκληρωτικών συναρτήσεων, δείτε τον κατάλογο ολοκληρωτικών.[ 3]
Σε όλους τους τύπους η σταθερά a θεωρείται μη μηδενική και το C δηλώνει τη σταθερά ολοκλήρωσης[ 4] .
∫
sinh
a
x
d
x
=
1
a
cosh
a
x
+
C
{\displaystyle \int \sinh ax\,dx={\frac {1}{a}}\cosh ax+C}
∫
sinh
2
a
x
d
x
=
1
4
a
sinh
2
a
x
−
x
2
+
C
{\displaystyle \int \sinh ^{2}ax\,dx={\frac {1}{4a}}\sinh 2ax-{\frac {x}{2}}+C}
∫
sinh
n
a
x
d
x
=
{
1
a
n
(
sinh
n
−
1
a
x
)
(
cosh
a
x
)
−
n
−
1
n
∫
sinh
n
−
2
a
x
d
x
,
n
>
0
1
a
(
n
+
1
)
(
sinh
n
+
1
a
x
)
(
cosh
a
x
)
−
n
+
2
n
+
1
∫
sinh
n
+
2
a
x
d
x
,
n
<
0
,
n
≠
−
1
{\displaystyle \int \sinh ^{n}ax\,dx={\begin{cases}{\frac {1}{an}}(\sinh ^{n-1}ax)(\cosh ax)-{\frac {n-1}{n}}\displaystyle \int \sinh ^{n-2}ax\,dx,&n>0\\{\frac {1}{a(n+1)}}(\sinh ^{n+1}ax)(\cosh ax)-{\frac {n+2}{n+1}}\displaystyle \int \sinh ^{n+2}ax\,dx,&n<0,n\neq -1\end{cases}}}
∫
d
x
sinh
a
x
=
1
a
ln
|
tanh
a
x
2
|
+
C
=
1
a
ln
|
cosh
a
x
+
1
sinh
a
x
|
+
C
=
1
a
ln
|
sinh
a
x
cosh
a
x
+
1
|
+
C
=
1
2
a
ln
|
cosh
a
x
−
1
cosh
a
x
+
1
|
+
C
{\displaystyle {\begin{aligned}\int {\frac {dx}{\sinh ax}}&={\frac {1}{a}}\ln \left|\tanh {\frac {ax}{2}}\right|+C\\&={\frac {1}{a}}\ln \left|{\frac {\cosh ax+1}{\sinh ax}}\right|+C\\&={\frac {1}{a}}\ln \left|{\frac {\sinh ax}{\cosh ax+1}}\right|+C\\&={\frac {1}{2a}}\ln \left|{\frac {\cosh ax-1}{\cosh ax+1}}\right|+C\end{aligned}}}
∫
d
x
sinh
n
a
x
=
−
cosh
a
x
a
(
n
−
1
)
sinh
n
−
1
a
x
−
n
−
2
n
−
1
∫
d
x
sinh
n
−
2
a
x
(for
n
≠
1
)
{\displaystyle \int {\frac {dx}{\sinh ^{n}ax}}=-{\frac {\cosh ax}{a(n-1)\sinh ^{n-1}ax}}-{\frac {n-2}{n-1}}\int {\frac {dx}{\sinh ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫
x
sinh
a
x
d
x
=
1
a
x
cosh
a
x
−
1
a
2
sinh
a
x
+
C
{\displaystyle \int x\sinh ax\,dx={\frac {1}{a}}x\cosh ax-{\frac {1}{a^{2}}}\sinh ax+C}
∫
(
sinh
a
x
)
(
sinh
b
x
)
d
x
=
1
a
2
−
b
2
(
a
(
sinh
b
x
)
(
cosh
a
x
)
−
b
(
cosh
b
x
)
(
sinh
a
x
)
)
+
C
(for
a
2
≠
b
2
)
{\displaystyle \int (\sinh ax)(\sinh bx)\,dx={\frac {1}{a^{2}-b^{2}}}{\big (}a(\sinh bx)(\cosh ax)-b(\cosh bx)(\sinh ax){\big )}+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}}
∫
cosh
a
x
d
x
=
1
a
sinh
a
x
+
C
{\displaystyle \int \cosh ax\,dx={\frac {1}{a}}\sinh ax+C}
∫
cosh
2
a
x
d
x
=
1
4
a
sinh
2
a
x
+
x
2
+
C
{\displaystyle \int \cosh ^{2}ax\,dx={\frac {1}{4a}}\sinh 2ax+{\frac {x}{2}}+C}
∫
cosh
n
a
x
d
x
=
{
1
a
n
(
sinh
a
x
)
(
cosh
n
−
1
a
x
)
+
n
−
1
n
∫
cosh
n
−
2
a
x
d
x
,
n
>
0
−
1
a
(
n
+
1
)
(
sinh
a
x
)
(
cosh
n
+
1
a
x
)
+
n
+
2
n
+
1
∫
cosh
n
+
2
a
x
d
x
,
n
<
0
,
n
≠
−
1
{\displaystyle \int \cosh ^{n}ax\,dx={\begin{cases}{\frac {1}{an}}(\sinh ax)(\cosh ^{n-1}ax)+{\frac {n-1}{n}}\displaystyle \int \cosh ^{n-2}ax\,dx,&n>0\\-{\frac {1}{a(n+1)}}(\sinh ax)(\cosh ^{n+1}ax)+{\frac {n+2}{n+1}}\displaystyle \int \cosh ^{n+2}ax\,dx,&n<0,n\neq -1\end{cases}}}
∫
d
x
cosh
a
x
=
2
a
arctan
e
a
x
+
C
=
1
a
arctan
(
sinh
a
x
)
+
C
{\displaystyle {\begin{aligned}\int {\frac {dx}{\cosh ax}}&={\frac {2}{a}}\arctan e^{ax}+C\\&={\frac {1}{a}}\arctan(\sinh ax)+C\end{aligned}}}
∫
d
x
cosh
n
a
x
=
sinh
a
x
a
(
n
−
1
)
cosh
n
−
1
a
x
+
n
−
2
n
−
1
∫
d
x
cosh
n
−
2
a
x
(for
n
≠
1
)
{\displaystyle \int {\frac {dx}{\cosh ^{n}ax}}={\frac {\sinh ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cosh ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫
x
cosh
a
x
d
x
=
1
a
x
sinh
a
x
−
1
a
2
cosh
a
x
+
C
{\displaystyle \int x\cosh ax\,dx={\frac {1}{a}}x\sinh ax-{\frac {1}{a^{2}}}\cosh ax+C}
∫
x
2
cosh
a
x
d
x
=
−
2
x
cosh
a
x
a
2
+
(
x
2
a
+
2
a
3
)
sinh
a
x
+
C
{\displaystyle \int x^{2}\cosh ax\,dx=-{\frac {2x\cosh ax}{a^{2}}}+\left({\frac {x^{2}}{a}}+{\frac {2}{a^{3}}}\right)\sinh ax+C}
∫
(
cosh
a
x
)
(
cosh
b
x
)
d
x
=
1
a
2
−
b
2
(
a
(
sinh
a
x
)
(
cosh
b
x
)
−
b
(
sinh
b
x
)
(
cosh
a
x
)
)
+
C
(for
a
2
≠
b
2
)
{\displaystyle \int (\cosh ax)(\cosh bx)\,dx={\frac {1}{a^{2}-b^{2}}}{\big (}a(\sinh ax)(\cosh bx)-b(\sinh bx)(\cosh ax){\big )}+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}}
∫
d
x
1
+
cosh
(
a
x
)
=
2
a
1
1
+
e
−
a
x
+
C
{\displaystyle \int {\frac {dx}{1+\cosh(ax)}}={\frac {2}{a}}{\frac {1}{1+e^{-ax}}}+C\quad }
ή
2
a
{\displaystyle {\frac {2}{a}}}
επί τη λογιστική συνάρτηση
∫
tanh
x
d
x
=
ln
cosh
x
+
C
{\displaystyle \int \tanh x\,dx=\ln \cosh x+C}
∫
tanh
2
a
x
d
x
=
x
−
tanh
a
x
a
+
C
{\displaystyle \int \tanh ^{2}ax\,dx=x-{\frac {\tanh ax}{a}}+C}
∫
tanh
n
a
x
d
x
=
−
1
a
(
n
−
1
)
tanh
n
−
1
a
x
+
∫
tanh
n
−
2
a
x
d
x
(for
n
≠
1
)
{\displaystyle \int \tanh ^{n}ax\,dx=-{\frac {1}{a(n-1)}}\tanh ^{n-1}ax+\int \tanh ^{n-2}ax\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫
coth
x
d
x
=
ln
|
sinh
x
|
+
C
,
for
x
≠
0
{\displaystyle \int \coth x\,dx=\ln |\sinh x|+C,{\text{ for }}x\neq 0}
∫
coth
n
a
x
d
x
=
−
1
a
(
n
−
1
)
coth
n
−
1
a
x
+
∫
coth
n
−
2
a
x
d
x
(for
n
≠
1
)
{\displaystyle \int \coth ^{n}ax\,dx=-{\frac {1}{a(n-1)}}\coth ^{n-1}ax+\int \coth ^{n-2}ax\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
∫
sech
x
d
x
=
arctan
(
sinh
x
)
+
C
{\displaystyle \int \operatorname {sech} \,x\,dx=\arctan \,(\sinh x)+C}
∫
csch
x
d
x
=
ln
|
tanh
x
2
|
+
C
=
ln
|
coth
x
−
csch
x
|
+
C
,
for
x
≠
0
{\displaystyle \int \operatorname {csch} \,x\,dx=\ln \left|\tanh {x \over 2}\right|+C=\ln \left|\coth {x}-\operatorname {csch} {x}\right|+C,{\text{ for }}x\neq 0}
∫
(
cosh
a
x
)
(
sinh
b
x
)
d
x
=
1
a
2
−
b
2
(
a
(
sinh
a
x
)
(
sinh
b
x
)
−
b
(
cosh
a
x
)
(
cosh
b
x
)
)
+
C
(for
a
2
≠
b
2
)
{\displaystyle \int (\cosh ax)(\sinh bx)\,dx={\frac {1}{a^{2}-b^{2}}}{\big (}a(\sinh ax)(\sinh bx)-b(\cosh ax)(\cosh bx){\big )}+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}}
∫
cosh
n
a
x
sinh
m
a
x
d
x
=
cosh
n
−
1
a
x
a
(
n
−
m
)
sinh
m
−
1
a
x
+
n
−
1
n
−
m
∫
cosh
n
−
2
a
x
sinh
m
a
x
d
x
(for
m
≠
n
)
=
−
cosh
n
+
1
a
x
a
(
m
−
1
)
sinh
m
−
1
a
x
+
n
−
m
+
2
m
−
1
∫
cosh
n
a
x
sinh
m
−
2
a
x
d
x
(for
m
≠
1
)
=
−
cosh
n
−
1
a
x
a
(
m
−
1
)
sinh
m
−
1
a
x
+
n
−
1
m
−
1
∫
cosh
n
−
2
a
x
sinh
m
−
2
a
x
d
x
(for
m
≠
1
)
{\displaystyle {\begin{aligned}\int {\frac {\cosh ^{n}ax}{\sinh ^{m}ax}}\,dx&={\frac {\cosh ^{n-1}ax}{a(n-m)\sinh ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\cosh ^{n-2}ax}{\sinh ^{m}ax}}\,dx\qquad {\mbox{(for }}m\neq n{\mbox{)}}\\&=-{\frac {\cosh ^{n+1}ax}{a(m-1)\sinh ^{m-1}ax}}+{\frac {n-m+2}{m-1}}\int {\frac {\cosh ^{n}ax}{\sinh ^{m-2}ax}}\,dx\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\\&=-{\frac {\cosh ^{n-1}ax}{a(m-1)\sinh ^{m-1}ax}}+{\frac {n-1}{m-1}}\int {\frac {\cosh ^{n-2}ax}{\sinh ^{m-2}ax}}\,dx\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\end{aligned}}}
∫
sinh
m
a
x
cosh
n
a
x
d
x
=
sinh
m
−
1
a
x
a
(
m
−
n
)
cosh
n
−
1
a
x
+
m
−
1
n
−
m
∫
sinh
m
−
2
a
x
cosh
n
a
x
d
x
(for
m
≠
n
)
=
sinh
m
+
1
a
x
a
(
n
−
1
)
cosh
n
−
1
a
x
+
m
−
n
+
2
n
−
1
∫
sinh
m
a
x
cosh
n
−
2
a
x
d
x
(for
n
≠
1
)
=
−
sinh
m
−
1
a
x
a
(
n
−
1
)
cosh
n
−
1
a
x
+
m
−
1
n
−
1
∫
sinh
m
−
2
a
x
cosh
n
−
2
a
x
d
x
(for
n
≠
1
)
{\displaystyle {\begin{aligned}\int {\frac {\sinh ^{m}ax}{\cosh ^{n}ax}}\,dx&={\frac {\sinh ^{m-1}ax}{a(m-n)\cosh ^{n-1}ax}}+{\frac {m-1}{n-m}}\int {\frac {\sinh ^{m-2}ax}{\cosh ^{n}ax}}\,dx\qquad {\mbox{(for }}m\neq n{\mbox{)}}\\&={\frac {\sinh ^{m+1}ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {m-n+2}{n-1}}\int {\frac {\sinh ^{m}ax}{\cosh ^{n-2}ax}}\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\\&=-{\frac {\sinh ^{m-1}ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {m-1}{n-1}}\int {\frac {\sinh ^{m-2}ax}{\cosh ^{n-2}ax}}\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\end{aligned}}}
∫
sinh
(
a
x
+
b
)
sin
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
cosh
(
a
x
+
b
)
sin
(
c
x
+
d
)
−
c
a
2
+
c
2
sinh
(
a
x
+
b
)
cos
(
c
x
+
d
)
+
C
{\displaystyle \int \sinh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+C}
∫
sinh
(
a
x
+
b
)
cos
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
cosh
(
a
x
+
b
)
cos
(
c
x
+
d
)
+
c
a
2
+
c
2
sinh
(
a
x
+
b
)
sin
(
c
x
+
d
)
+
C
{\displaystyle \int \sinh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)+C}
∫
cosh
(
a
x
+
b
)
sin
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
sinh
(
a
x
+
b
)
sin
(
c
x
+
d
)
−
c
a
2
+
c
2
cosh
(
a
x
+
b
)
cos
(
c
x
+
d
)
+
C
{\displaystyle \int \cosh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+C}
∫
cosh
(
a
x
+
b
)
cos
(
c
x
+
d
)
d
x
=
a
a
2
+
c
2
sinh
(
a
x
+
b
)
cos
(
c
x
+
d
)
+
c
a
2
+
c
2
cosh
(
a
x
+
b
)
sin
(
c
x
+
d
)
+
C
{\displaystyle \int \cosh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)+C}
Gradshteyn, I. S.· Ryzhik, I. M. (10 Μαΐου 2014). Table of Integrals, Series, and Products . Academic Press. ISBN 978-1-4832-6564-3 .
Stewart, Seán M. (2018). How to Integrate It . Cambridge University Press. ISBN 978-1-108-41881-2 .
Board, Oswaal Editorial (9 Σεπτεμβρίου 2024). Oswaal ISC 10 Sample Question Papers Class 12 (Set of 5 Books) Physics, Chemistry, Maths, English Paper 1 & 2 For 2025 Board Exam (Based On The Latest CISCE/ICSE Specimen Paper) . Oswaal Books. ISBN 978-93-6239-374-6 .
Álvarez-Cónsul, Luis· Burgos-Gil, José Ignacio (24 Σεπτεμβρίου 2015). Feynman Amplitudes, Periods and Motives . American Mathematical Soc. ISBN 978-1-4704-2247-9 .
Dawson, C. Bryan (2022). Calculus Set Free: Infinitesimals to the Rescue . Oxford University Press. ISBN 978-0-19-289559-2 .
Barry, Steven Ian (2008). Essential Mathematical Skills: For Engineering, Science and Applied Mathematics . UNSW Press. ISBN 978-1-921410-33-8 .
Experts, Disha (27 Οκτωβρίου 2021). Guide to Indian Navy Senior Secondary Recruit (SSR) & Artificer Apprentice (AA) Exam 2021-22 . Disha Publications. ISBN 978-93-91551-67-4 .
Gerdt, Vladimir P.· Koepf, Wolfram (10 Σεπτεμβρίου 2015). Computer Algebra in Scientific Computing: 17th International Workshop, CASC 2015, Aachen, Germany, September 14-18, 2015, Proceedings . Springer. ISBN 978-3-319-24021-3 .
Wilson, R. L. (9 Μαρτίου 2013). Much Ado About Calculus: A Modern Treatment with Applications Prepared for Use with the Computer . Springer Science & Business Media. ISBN 978-1-4615-9644-8 .
Stewart, Seán M. (21 Δεκεμβρίου 2017). How to Integrate It: A Practical Guide to Finding Elementary Integrals . Cambridge University Press. ISBN 978-1-108-31414-5 .
Abramowitz, Milton· Stegun, Irene A., επιμ. (1972). «Chapter 3» . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables . New York: Dover.
Zwillinger, Daniel· Jeffrey, Alan (23 Φεβρουαρίου 2007). Table of Integrals, Series, and Products . Elsevier. ISBN 978-0-08-047111-2 .
Peirce, Benjamin Osgood (1929) [1899]. «Chapter 3». A Short Table of Integrals (3rd revised έκδοση). Boston: Ginn and Co. σελίδες 16–30.
Segal, I. E.· Kunze, R. A. (6 Δεκεμβρίου 2012). Integrals and Operators . Springer Science & Business Media. ISBN 978-3-642-66693-3 .
«Integrals of Particular Functions: Proofs with Solved Examples» . allen.in . Ανακτήθηκε στις 8 Μαρτίου 2025 .
Humanitarian Data Exchange(HDX) – The Humanitarian Data Exchange (HDX) is an open humanitarian data sharing platform managed by the United Nations Office for the Coordination of Humanitarian Affairs .
NYC Open Data – free public data published by New York City agencies and other partners.
Relational data set repository Αρχειοθετήθηκε 2018-03-07 στο Wayback Machine .
Research Pipeline – a wiki/website with links to data sets on many different topics
StatLib–JASA Data Archive
UCI – a machine learning repository
UK Government Public Data
World Bank Open Data – Free and open access to global development data by World Bank
Apostol, Tom M. (29 Ιουνίου 2013). Introduction to Analytic Number Theory . Springer Science & Business Media. ISBN 978-1-4757-5579-4 .
Miller, P. D. (2006), Applied Asymptotic Analysis , American Mathematical Society , ISBN 9780821840788 , https://books.google.com/books?id=KQvqBwAAQBAJ
Apostol, Thomas M. (1976), Introduction to Analytic Number Theory , New York: Springer, ISBN 0-387-90163-9 , https://archive.org/details/introductiontoan00apos_0