Συνέχεια συνάρτησης: Διαφορά μεταξύ των αναθεωρήσεων

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Περιεχόμενο που διαγράφηκε Περιεχόμενο που προστέθηκε
Camiel (συζήτηση | συνεισφορές)
Camiel (συζήτηση | συνεισφορές)
Γραμμή 35: Γραμμή 35:
=== Θεώρημα Bolzano. ===
=== Θεώρημα Bolzano. ===
=== Αν μια συνάρτηση <math> \textstyle f </math> ορισμένη σε ένα κλειστό διάστημα <math> \;\textstyle [a, b]</math>, είναι συνεχής σε αυτό και ισχύει <math>f(a)\cdot f(b)<0 </math> , τότε υπάρχει ένα '''τουλάχιστον''' <math>\; \xi\in (a,b)</math> τέτοιο ώστε <math> \textstyle f(\xi) = 0 </math>. ===
=== Αν μια συνάρτηση <math> \textstyle f </math> ορισμένη σε ένα κλειστό διάστημα <math> \;\textstyle [a, b]</math>, είναι συνεχής σε αυτό και ισχύει <math>f(a)\cdot f(b)<0 </math> , τότε υπάρχει ένα '''τουλάχιστον''' <math>\; \xi\in (a,b)</math> τέτοιο ώστε <math> \textstyle f(\xi) = 0 </math>. ===
[[:Αρχείο:Θεώρημα Bolzano.png|Αρχείο:Θεώρημα Bolzano.png]]
[[Αρχείο:Θεώρημα Bolzano.png]]


Γραφικά, το θεώρημα Bolzano, σημαίνει ότι, αν η <math>\textstyle f </math> είναι συνεχής στο <math> \;\textstyle [a, b]</math> και <math>\textstyle f(a) \; , f(b) </math> ετερόσημοι, τότε η γραφική παράσταση της <math>\; f\;</math> τέμνει τον άξονα <math>\textstyle x'x</math> σε ένα '''τουλάχιστον''' σημείο μεταξύ των <math>\textstyle a, b </math>.
Γραφικά, το θεώρημα Bolzano, σημαίνει ότι, αν η <math>\textstyle f </math> είναι συνεχής στο <math> \;\textstyle [a, b]</math> και <math>\textstyle f(a) \; , f(b) </math> ετερόσημοι, τότε η γραφική παράσταση της <math>\; f\;</math> τέμνει τον άξονα <math>\textstyle x'x</math> σε ένα '''τουλάχιστον''' σημείο μεταξύ των <math>\textstyle a, b </math>.

Έκδοση από την 08:37, 19 Ιανουαρίου 2020

Μαθηματικές Συναρτήσεις
Συναρτήσεις μίας μεταβλητής
Συναρτήσεις πολλών μεταβλητών

Στα μαθηματικά, μία συνάρτηση λέγεται συνεχής όταν μια μικρή μεταβολή στο όρισμά της προκαλεί μικρή μόνο μεταβολή στην τιμή της. Για τις συναρτήσεις που ορίζονται στους πραγματικούς αριθμούς η γραφική παράσταση μιας συνεχούς συνάρτησης σε ένα διάστημα (και όχι σε μία ένωση διαστημάτων) μπορεί να σχεδιαστεί χωρίς να χρειαστεί να σηκώσουμε το μολύβι από το χαρτί.

Συνέχεια πραγματικών συναρτήσεων

Ορισμός Κωσύ (γαλλ. Cauchy) ή «έψιλον-δέλτα»

Αν είναι μία συνάρτηση με πεδίο ορισμού και το ανήκει στο πεδίο ορισμού της, τότε η f ονομάζεται συνεχής στο αν

Η έννοια της συνέχειας μιας συνάρτησης ορίζεται μόνο στα σημεία που ανήκουν στο πεδίο ορισμού της. Η συνάρτηση ονομάζεται συνεχής στο αν είναι συνεχής σε κάθε σημείο του , δηλαδή αν

Σε αντιδιαστολή με την ομοιόμορφη συνέχεια, η συνέχεια αυτού του είδους λέγεται σημειακή συνέχεια.

Ορισμός μέσω ορίων

Ένας ορισμός που χρησιμοποιεί την έννοια του ορίου στις πραγματικές συναρτήσεις λέει ότι μία συνάρτηση είναι συνεχής σε κάποιο σημείο του πεδίου ορισμού της αν το όριο της συνάρτησης στο σημείο αυτό συμπίπτει με την τιμή της, δηλαδή αν:

Αυτός ο ορισμός όμως δεν είναι αρκετός γιατί το όριο έχει έννοια μόνο όταν το είναι σημείο συσσώρευσης της συνάρτησης f και επομένως με τον ορισμό αυτό μπορούμε να ελέγξουμε αν μία συνάρτηση είναι συνεχής μόνο στα σημεία συσσώρευσής της, (αν όμως το δεν είναι σημείο συσσώρευσης της f, τότε είναι μεμονωμένο σημείο και επομένως η f είναι έτσι και αλλιώς συνεχής σε αυτό).

Αρχή της μεταφοράς - ορισμός Χάινε (γερμ. Heine)

Μια πραγματική συνάρτηση είναι συνεχής σε ένα σημείο του πεδίου ορισμού της Α αν και μόνο αν για κάθε ακολουθία στο Α, με:

ισχύει:

Με άλλα λόγια μία πραγματική συνάρτηση είναι συνεχής κατά Χάινε αν διατηρεί τα όρια, δηλαδή αν το όριο των εικόνων ισούται με την εικόνα του ορίου.

Συνέχεια σε τοπολογικούς χώρους

Μια συνάρτηση f ορισμένη στο X που λαμβάνει τιμές στο Y, όπου X και Y είναι τοπολογικοί χώροι, είναι συνεχής στο x όπου αν για κάθε γειτονιά V της f(x), υπάρχει μια γειτονιά U του x τέτοια ώστε . Με πιο απλά λόγια, αυτό σημαίνει ότι όσο μικρή κι αν γίνεται η V μπορούμε πάντα να βρούμε μια U του x που να απεικονίζεται στην V. Λέμε ότι η f είναι συνεχής αν είναι συνεχής σε κάθε .

Συνέχεια σε διάστημα

Ορισμός

Μία συνάρτηση ονομάζεται συνεχής σε ένα κλειστό διάστημα , υποσύνολο του πεδίου ορισμού της , αν είναι συνεχής σε κάθε και

Βασικά θεωρήματα συνεχών συναρτήσεων

Θεώρημα Bolzano.

Αν μια συνάρτηση ορισμένη σε ένα κλειστό διάστημα , είναι συνεχής σε αυτό και ισχύει , τότε υπάρχει ένα τουλάχιστον τέτοιο ώστε .

Γραφικά, το θεώρημα Bolzano, σημαίνει ότι, αν η είναι συνεχής στο και ετερόσημοι, τότε η γραφική παράσταση της τέμνει τον άξονα σε ένα τουλάχιστον σημείο μεταξύ των .

Θεώρημα σταθερού σημείου

Αν συνάρτηση συνεχής στο με , τότε υπάρχει ένα τουλάχιστον , τέτοιο ώστε .

Θεώρημα ενδιάμεσης τιμής

Το θεώρημα ενδιάμεσης τιμής βασίζεται στην αρχή της πληρότητας και διατυπώνεται ως εξής:

Αν μια συνάρτηση ορισμένη σε ένα κλειστό διάστημα είναι συνεχής σε αυτό και ισχύει , τότε για οποιοδήποτε μεταξύ των υπάρχει ένα τουλάχιστον τέτοιο ώστε .

Θεώρημα μέγιστης και ελάχιστης τιμής

Το θεώρημα μέγιστης-ελάχιστης τιμής διατυπώνεται ως εξής:

Αν μία συνάρτηση f ορισμένη σε ένα κλειστό διάστημα [α, β] είναι συνεχής σε αυτό, τότε υπάρχουν τέτοια ώστε

Δηλαδή , οι τιμές και είναι αντιστοίχως, η ελάχιστη και η μέγιστη τιμή της στο .

Το πιο πάνω δεν ισχύει αν η συνάρτηση είναι ορισμένη σε ανοικτό διάστημα. Για παράδειγμα η συνάρτηση με τύπο είναι συνεχής στο (0, 1) αλλά δεν έχει μέγιστο.

Ομοιόμορφη συνέχεια

Η έννοια της ομοιόμορφης συνέχειας είναι πιο ισχυρή από αυτή της (σημειακής) συνέχειας. Επιπλέον, ενώ η συνέχεια μιας συνάρτησης είναι τοπική έννοια, δηλαδή αναφέρεται σε συγκεκριμένα σημεία του πεδίου ορισμού της, η έννοια της ομοιόμορφης συνέχειας αναφέρεται σε ολόκληρο το πεδίο ορισμού της.

Λέμε ότι μια συνάρτηση είναι ομοιόμορφα συνεχής αν

Η θεμελιώδης διαφορά της ομοιόμορφης συνέχειας από τη σημειακή έγκειται στο ότι η ακτίνα δ δεν εξαρτάται από το κέντρο x0 κάθε φορά, παρά μόνο από την ακτίνα ε.