Διαφορά μεταξύ των αναθεωρήσεων του «Κλάσμα»

Μετάβαση στην πλοήγηση Πήδηση στην αναζήτηση
μ
Αναστροφή της επεξεργασίας από τον 2A02:587:1838:9E00:E165:FAFF:A379:4471 (συνεισφ.),...
(προσθεσα κατι ασαφες)
μ (Αναστροφή της επεξεργασίας από τον 2A02:587:1838:9E00:E165:FAFF:A379:4471 (συνεισφ.),...)
'''Κλάσμα''' στα μαθηματικά είναι μια ειδική περίπτωση [[Λόγος (μαθηματικά)|λόγου]], στην οποία {{ασαφές|δυο αριθμοί συσχετίζονται σε μια σχέση ένα-προς-πολλά}}, αντί για μια συγκριτική συσχέτιση μεταξύ ποσοτήτων.<ref>(Gellert, W. (1977). The VNR Concise Encyclopedia of Mathematics.</ref> Αποτελείται από δυο τμήματα, τον ''αριθμητή'' που βρίσκεται πάνω από τη ''γραμμή κλάσματος'' και τον ''παρονομαστή'' που βρίσκεται στο κάτω μέρος· ο αριθμητής και ο παρονομαστής λέγονται ''όροι του κλάσματος''. Οι όροι μπορεί να είναι οποιοιδήποτε ακέραιοι αριθμοί, θετικοί ή αρνητικοί, με μοναδικό περιορισμό ότι ο παρονομαστής δεν μπορεί ποτέ να είναι [[μηδέν]]. Το κλάσμα ουσιαστικά είναι μια μορφή [[μαθηματική αναπαράσταση|αναπαράστασης]] του πηλίκου της [[διαίρεση]]ς δυο αριθμών, του αριθμητή δια του παρονομαστή. Έτσι, μπορεί η [[αριθμητική τιμή|αριθμητική του τιμή]] να ισούται με έναν [[ακέραιος αριθμός|ακέραιο]] ή έναν [[δεκαδικός αριθμός|δεκαδικό αριθμό]]. Το κλάσμα είναι [[ρητός αριθμός]]. Το σύνθετο κλάσμα είναι ένα κλάσμα το οποίο για όρους έχει δυο άλλα κλάσματα.
 
Όπως και όλοι οι αριθμοί <nowiki>{{ασαφές}}</nowiki>, τα κλάσματα μπορούν να προστεθούν, να αφαιρεθούν, να πολλαπλασιαστούν και να διαιρεθούν. Ειδικοί κανόνες ισχύουν για την [[πρόσθεση]] και την [[αφαίρεση]], όπου για να μπορέσει να εκτελεστεί η πράξη πρέπει τα κλάσματα να είναι ''ομώνυμα'', δηλαδή να έχουν ίδιο παρονομαστή, κάτι που πετυχαίνεται με πολλαπλασιασμό των όρων των κλασμάτων με τον κατάλληλο αριθμό ώστε οι παρονομαστές να γίνουν ίσοι με το [[ελάχιστο κοινό πολλαπλάσιο]] τους. Ο [[πολλαπλασιασμός]] γίνεται με πολλαπλασιασμό των ομόλογων όρων (αριθμητές με αριθμητές, παρονομαστές με παρονομαστές) ενώ η [[διαίρεση]] μέσω της [[απλοποίηση σύνθετου κλάσματος|απλοποίησης σύνθετου κλάσματος]] ή, πιο απλά, με πολλαπλασιασμό με το αντίστροφο του κλάσματος που αποτελεί το διαιρέτη.
 
Τα κλάσματα που έχουν τον ίδιο παρονομαστή ονομάζονται ομώνυμα. Τα κλάσματα που δεν είναι ομώνυμα λέγονται ετερώνυμα. Αν δύο κλάσματα δεν είναι ομώνυμα τότε μπορούμε να βρούμε δύο κλάσματα ισοδύναμα με αυτά που να είναι ομώνυμα. Η εργασία είναι απλή: πολλαπλασιάζουμε τους όρους κάθε κλάσματος με τον παρονομαστή του άλλου. Από δύο ομώνυμα κλάσματα μεγαλύτερο είναι αυτό που έχει τον μεγαλύτερο αριθμητή. Με ετερώνυμα κλάσματα μπορούμε να κάνουμε μόνο [[πολλαπλασιασμός|πολλαπλασιασμό]] και [[διαίρεση]]. Για να κάνουμε πρόσθεση ή αφαίρεση κλασμάτων θα πρέπει τα κλάσματα να είναι ομώνυμα.
75.708

επεξεργασίες

Μενού πλοήγησης