Ολοκλήρωση κατά Λεμπέγκ: Διαφορά μεταξύ των αναθεωρήσεων

Μετάβαση στην πλοήγηση Πήδηση στην αναζήτηση
καμία σύνοψη επεξεργασίας
Χωρίς σύνοψη επεξεργασίας
Χωρίς σύνοψη επεξεργασίας
Κατά το δέκατο ένατο αιώνα, έγιναν προσπάθειες να στηθεί ο Ολοκληρωτικός Λογισμός σε μια πιο αυστηρή βάση, στα πλαίσια μιας γενικότερης αυστηροποίησης των μαθηματικών. Το [[Μπέρναρντ Ρίμαν|Ρίμαν]] ολοκλήρωμα, είναι μια επιτυχημένη τέτοια προσπάθεια που βοηθά στην επίτευξη αυτού τού στόχου. Ο ορισμός που έδωσε ο Ρίμαν, ξεκινά με την κατασκευή μιας ακολουθίας εμβαδών, που εύκολα υπολογίζονται, η οποία συγκλίνει στο ολοκλήρωμα μιας δοσμένης συνάρτησης. Αυτός ο ορισμός είναι επιτυχημένος, με την έννοια ότι δίνει την αναμενόμενη απάντηση σε ήδη λυμένα προβλήματα, καθώς και χρήσιμα αποτελέσματα σε πολλά άλλα προβλήματα.
 
Ωστόσο, η Ολοκλήρωση κατά Ρίμαν δεν αλληλεπιδρά καλά με τα όρια ακολουθιών συναρτήσεων, πράγμα που καθιστά δύσκολη την ανάλυση τέτοιων διαδικασιών. Αυτή είναι πρεωτεύουσας σημασίας σε άλλους κλάδους των μαθηματικών, όπως για παράδειγμα στην [[Ανάλυση Φουριέ]]. Το ολοκλήρωμα ΛεμπέκΛεμπέγκ μπορεί καλύτερα να περιγράψει κάτω από ποιές συνθήκες μπορεί το ολοκλήρωμα να βγει έξω από το όριο, με τα ισχυρά θεωρήματα της [[Μονοτονία συνάρτησης|Μονότονης]] Σύγκλισης και της Κυριαρχούμενης Σύγκλισης. Ο ορισμός τού Λεμπέγκ, σε αντίθεση με τού Ρίμαν, θεωρεί μια άλλη κατηγορία εύκολα υπολογίσιμων εμβαδών και γι' αυτό το λόγο το ολοκλήρωμα Λεμπέγκ συμπεριφέρεται καλύτερα. Επιπλέον, το ολοκλήρωμα Λεμπέγκ καθιστά δυνατό τον υπολογισμό ολοκληρωμάτων για μια ευρύτερη κατηγορία συναρτήσεων. Για παράδειγμα, η συνάρτηση τού Ντίριχλετ, η οποία είναι 0 όταν το όρισμά της είναι [[Άρρητος αριθμός|άρρητος]] και 1 όταν είναι [[Ρητός αριθμός|ρητός]], ενώ δεν είναι Ρίμαν ολοκληρώσιμη, είναι Λεμπέγκ ολοκληρώσιμη και το ολοκλήρωμά της ισούται με 0.
 
Η προσέγγιση τού Λεμπέγκ για το ολοκλήρωμα συνοψίζεται σε ένα γράμμα του, όπου γράφει:
{{quote|Πρέπει να πληρώσω ένα συγκεκριμένο ποσό. Βγάζω τα χαρτονομίσματα και τα νομίσματα από την τσέπη μου και για να πληρώσω, τα δίνω με τη σειρά που τα βρίσκω μέχρι να φτάσω το συνολικό ποσό. Αυτό είναι το Ρίμαν ολοκλήρωμα. Αλλά μπορώ να πληρώσω διαφορετικά. Αφού βγάλω όλα τα χρήματα από την τσέπη μου, στοιβάζω τα νομίσματα και τα χαρτονομίσματα σε σειρά με βάση την αξία τους και ύστερα πληρώνω δίνοντας τις στοίβες τη μία μετά την άλλη. Αυτό είναι το δικό μου ολοκλήρωμα.}}
 
 
The insight is that one should be able to rearrange the values of a function freely while preserving the value of the integral. This process of rearrangement can convert a very [[Pathological (mathematics)|pathological function]] into one which is "nice" from the point of view of integration, and thus allows for such pathological functions to be integrated.
 
== Δείτε επίσης ==
 
 
== NotesΠαραπομπές ==
{{reflist}}
 
== References ==
 
* {{cite book
15

επεξεργασίες

Μενού πλοήγησης