Σώμα (άλγεβρα): Διαφορά μεταξύ των αναθεωρήσεων

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Περιεχόμενο που διαγράφηκε Περιεχόμενο που προστέθηκε
George Evgenidis (συζήτηση | συνεισφορές)
Spiros790 (συζήτηση | συνεισφορές)
Χωρίς σύνοψη επεξεργασίας
Γραμμή 1: Γραμμή 1:
{{Πηγές|07|05|2015}}
{{Επιστημονικό πεδίο|
{{Επιστημονικό πεδίο|
|όνομα= Σώμα (Άλγεβρα)
|όνομα= Σώμα (Άλγεβρα)
Γραμμή 4: Γραμμή 5:
|msc2010= 16-XX
|msc2010= 16-XX
}}
}}

'''Σώμα''' (από το [[γαλλική γλώσσα|γαλλικό]] ''Corps'') είναι ένα [[σύνολο]] <math>\mathbb{F}</math> (από το [[αγγλική γλώσσα|αγγλικό]] ''Field'') αντικειμένων οποιουδήποτε είδους, μαζί με δύο [[δυαδική πράξη|δυαδικές πράξεις]] + και * ορισμένες στο <math>\mathbb{F}</math>, οι οποίες απεικονίζουν 2 στοιχεία a και b που ανήκουν στο F στα a+b και a*b, επίσης στοιχεία του F.
'''Σώμα''' (από το [[γαλλική γλώσσα|γαλλικό]] ''Corps'') είναι ένα [[σύνολο]] <math>\mathbb{F}</math> (από το [[αγγλική γλώσσα|αγγλικό]] ''Field'') αντικειμένων οποιουδήποτε είδους, μαζί με δύο [[δυαδική πράξη|δυαδικές πράξεις]] + και * ορισμένες στο <math>\mathbb{F}</math>, οι οποίες απεικονίζουν 2 στοιχεία a και b που ανήκουν στο F στα a+b και a*b, επίσης στοιχεία του F.
Και ισχύουν οι εξής ιδιότητες:
Και ισχύουν οι εξής ιδιότητες:
Γραμμή 36: Γραμμή 36:
α) το Κ είναι υποδακτύλιος του F
α) το Κ είναι υποδακτύλιος του F
β) για κάθε κ που ανήκει στο Κ\(0) υπάρχει κ^(-1) που ανήκει στο Κ
β) για κάθε κ που ανήκει στο Κ\(0) υπάρχει κ^(-1) που ανήκει στο Κ

[[Κατηγορία:Άλγεβρα]]




{{Portal bar|Μαθηματικά}}
{{Μαθηματικά-επέκταση}}
{{Μαθηματικά-επέκταση}}

[[Κατηγορία:Άλγεβρα]]

Έκδοση από την 07:20, 7 Μαΐου 2015

Πρότυπο:Επιστημονικό πεδίο Σώμα (από το γαλλικό Corps) είναι ένα σύνολο (από το αγγλικό Field) αντικειμένων οποιουδήποτε είδους, μαζί με δύο δυαδικές πράξεις + και * ορισμένες στο , οι οποίες απεικονίζουν 2 στοιχεία a και b που ανήκουν στο F στα a+b και a*b, επίσης στοιχεία του F. Και ισχύουν οι εξής ιδιότητες:

  1. (υπάρχει στοιχείο 0 που ανήκει στο F), τέτοιο ώστε
  • για κάθε που ανήκει στο , και
  • (για κάθε a που ανήκει στο F υπάρχει b που ανήκει στο F τέτοιο ώστε a+b=0).
  1. a+b=b+a Δηλαδή να ισχύει η αντιμεταθετική ιδιότητα στο F
  2. (a*b)*c=a*(b*c)
  3. Υπάρχει αριθμός 1 που ανήκει στο F τέτοιος ώστε (i).a*1=a (ii). Και να υπάρχει, για κάθε a διάφορο του μηδενός, ένα b, τέτοιο ώστε a*b=1.
  4. a*b=b*a
  5. a*(b+c)=a*b+a*c

Τα γνωστά παραδείγματα σωμάτων όπως είναι προφανές από τα θεωρήματα του Σώματος είναι το και το και το σώμα των μιγαδικών αριθμών . Βεβαίως τα + και το * είναι τα γνωστά σύμβολα της πρόσθεσης και του πολλαπλασιασμού άρα δεν χρειάζονται περαιτέρω διερεύνηση. Το στοιχείο 0 είναι το ουδέτερο στοιχείο της πρόσθεσης και το 1 είναι το ουδέτερο στοιχείο του πολλαπλασιασμού. Το αντίθετο της πρόσθεσης το συμβολίζουμε με -a έτσι ώστε για κάθε a να υπάρχει -a, τέτοιο ώστε a+(-a)=0, και το αντίστροφο του πολλαπλασιασμού συμβολίζεται με , τέτοιο ώστε, για κάθε a που ανήκει στο F, να υπάρχει τέτοιο ώστε a* =1.

Εκτός από τα γνωστά παραδείγματα σωμάτων υπάρχουν και τα παραδείγματα των σωμάτων που είναι της μορφής a+b* και γενικά της μορφής αυτής που το υπόρριζο μπορεί να πάρει τις τιμές 2,3,...,ν.

Ένας δακτύλιος καλείται σώμα αν ισχύουν τα εξής :

  • Ο δακτύλιος είναι μεταθετικός.
  • Υπάρχει Μοναδιαίο Στοιχείο ώστε για κάθε
  • Για κάθε υπάρχει στοιχείο του το οποίο συμβολίζουμε με τέτοιο ώστε

Τυπικό παράδειγμα σώματος είναι το σύνολο των πραγματικών αριθμών , καθώς είναι μοναδιαίος αντιμεταθετικός δακτύλιος και κάθε μη μηδενικό στοιχείο του έχει αντίστροφο.

Υπόσωμα

Έστω F σώμα. Ένα υποσύνολο του F, έστω Κ, ονομάζεται υπόσωμα του F αν ισχύουν τα εξης: α) το Κ είναι υποδακτύλιος του F β) για κάθε κ που ανήκει στο Κ\(0) υπάρχει κ^(-1) που ανήκει στο Κ