Διάταξη: Διαφορά μεταξύ των αναθεωρήσεων

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Περιεχόμενο που διαγράφηκε Περιεχόμενο που προστέθηκε
Frantzis a (συζήτηση | συνεισφορές)
μΧωρίς σύνοψη επεξεργασίας
Frantzis a (συζήτηση | συνεισφορές)
μΧωρίς σύνοψη επεξεργασίας
Γραμμή 1: Γραμμή 1:
Μια '''διάταξη των n''' στοιχείων συνόλου Ζ{Ζ1...Ζn}ανά k''' είναι ένα διατεταγμένο δείγμα (z_1,...,z_\k) που προκύπτει από διαδοχική και χωρίς επανάθεση επιλογή k στοιχείων από το σύνολο Z. Όπου n και k είναι θετικοί ακέραιοι και k μικρότερο ή ίσο του n.
Μια διάταξη των n στοιχείων συνόλου Ζ{z1,z2...zn} ανά k είναι ένα διατεταγμένο δείγμα
(z1,z2...,zk) που προκύπτει από διαδοχική και χωρίς επανάθεση επιλογή k στοιχείων από το σύνολο Z, όπου n και k είναι θετικοί ακέραιοι και k μικρότερο ή ίσο του n.

Με πιο απλά λόγια, αν Ζ είναι ένα σύνολο με n στοιχεία, τότε λέμε διάταξη των n στοιχείων του Ζ ανά k καθέναν από τους διαφορετικούς τρόπους με τους οποίους μπορούμε να πάρουμε k διαφορετικά στοιχεία του Ζ και να τα βάλουμε σε μια σειρά.
Με πιο απλά λόγια, αν Ζ είναι ένα σύνολο με n στοιχεία, τότε λέμε διάταξη των n στοιχείων του Ζ ανά k, καθέναν από τους διαφορετικούς τρόπους με τους οποίους μπορούμε να πάρουμε k διαφορετικά στοιχεία του Ζ και να τα βάλουμε σε μια σειρά.


Δύο διατάξεις ταυτίζονται όταν έχουν τα ίδια στοιχεία και με την ίδια σειρά.
Δύο διατάξεις ταυτίζονται όταν έχουν τα ίδια στοιχεία και με την ίδια σειρά.
Γραμμή 7: Γραμμή 9:


Ο αριθμός (το πλήθος) των διατάξεων των n ανά k συμβολίζεται με (n)k (το k είναι δείκτης) και είναι
Ο αριθμός (το πλήθος) των διατάξεων των n ανά k συμβολίζεται με (n)k (το k είναι δείκτης) και είναι
:(n)k = n(n-1)...(n-k+1), το οποίο γράφεται διαδοχικά: n(n-1)(n-2)...(n-k+1)=[n(n-1)(n-2)...(n-k+1)(n-k)...3·2·1]/[(n-k)...3·2·1]= n!/(n-k)!
:(n)k = n(n-1)...(n-k+1), το οποίο γράφεται διαδοχικά:
n(n-1)(n-2)...(n-k+1)=[n(n-1)(n-2)...(n-k+1)(n-k)...3·2·1]/[(n-k)...3·2·1]= n!/(n-k)!

Ώστε το πλήθος των διατάξεων των n στοιχείων ανά k είναι: n!/(n-k)!
'''Ώστε το πλήθος των διατάξεων των n στοιχείων ανά k είναι: n!/(n-k)!'''
Αν έχουμε n=k, τότε προφανώς οι διατάξεις των n ανά n είναι οι μεταθέσεις όλων των στοιχείων (=n) του συνόλου δηλαδή n!
Αν έχουμε n=k, τότε προφανώς οι διατάξεις των n ανά n είναι οι μεταθέσεις όλων των στοιχείων (=n) του συνόλου δηλαδή n!
Για να ισχύει και στην περίπτωση αυτή ο τύπος n!/(n-k)! ορίζουμε ότι 0!=1



Για να ισχύει και στην περίπτωση αυτή ο τύπος n!/(n-k)! ορίζουμε ότι 0!=1


== Πηγές ==
== Πηγές ==

Έκδοση από την 13:58, 11 Αυγούστου 2014

Μια διάταξη των n στοιχείων συνόλου Ζ{z1,z2...zn} ανά k είναι ένα διατεταγμένο δείγμα (z1,z2...,zk) που προκύπτει από διαδοχική και χωρίς επανάθεση επιλογή k στοιχείων από το σύνολο Z, όπου n και k είναι θετικοί ακέραιοι και k μικρότερο ή ίσο του n.

Με πιο απλά λόγια, αν Ζ είναι ένα σύνολο με n στοιχεία, τότε λέμε διάταξη των n στοιχείων του Ζ ανά k, καθέναν από τους διαφορετικούς τρόπους με τους οποίους μπορούμε να πάρουμε k διαφορετικά στοιχεία του Ζ και να τα βάλουμε σε μια σειρά.

Δύο διατάξεις ταυτίζονται όταν έχουν τα ίδια στοιχεία και με την ίδια σειρά.

Για παράδειγμα έχουμε το σύνολο . Μια διάταξη των 4 στοιχείων του ανά 3 είναι η διατεταγμένη τριάδα ενώ μια άλλη διάταξη των 4 στοιχείων ανά 3 είναι η διατεταγμένη τριάδα .

Ο αριθμός (το πλήθος) των διατάξεων των n ανά k συμβολίζεται με (n)k (το k είναι δείκτης) και είναι

(n)k = n(n-1)...(n-k+1), το οποίο γράφεται διαδοχικά:

n(n-1)(n-2)...(n-k+1)=[n(n-1)(n-2)...(n-k+1)(n-k)...3·2·1]/[(n-k)...3·2·1]= n!/(n-k)!

Ώστε το πλήθος των διατάξεων των n στοιχείων ανά k είναι: n!/(n-k)! Αν έχουμε n=k, τότε προφανώς οι διατάξεις των n ανά n είναι οι μεταθέσεις όλων των στοιχείων (=n) του συνόλου δηλαδή n!

Για να ισχύει και στην περίπτωση αυτή ο τύπος n!/(n-k)! ορίζουμε ότι 0!=1

Πηγές

  • Γ. Κοκολάκης, Εισαγωγή στη Θεωρία Πιθανοτήτων και Στατιστική, 1991.