Αιθανόλη: Διαφορά μεταξύ των αναθεωρήσεων

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Περιεχόμενο που διαγράφηκε Περιεχόμενο που προστέθηκε
Vchorozopoulos (συζήτηση | συνεισφορές)
Vchorozopoulos (συζήτηση | συνεισφορές)
Γραμμή 157: Γραμμή 157:
Η [[αιθανολική ζύμωση|ζύμωση]] της ζάχαρης σε αιθανόλη ήταν μια από τις πιο παλιές [[βιοτεχνολογία|βιοτεχνολογίες]] που εφάρμοσαν οι άνθρωποι. Η αιθανόλη, και τα μεθυστικά αποτελέσματα της κατανάλωσής της, ήταν γνωστή στους ανθρώπου από την [[Προϊστορία]] ως μεθυστικό συστατικό των αλκοολούχων ποτών. Αποξηραμένο υπόλειμμα 9.000 ετών σε κεραμικό δοχείο βρέθηκε στην [[Κίνα]], γεγονός που δείχνει
Η [[αιθανολική ζύμωση|ζύμωση]] της ζάχαρης σε αιθανόλη ήταν μια από τις πιο παλιές [[βιοτεχνολογία|βιοτεχνολογίες]] που εφάρμοσαν οι άνθρωποι. Η αιθανόλη, και τα μεθυστικά αποτελέσματα της κατανάλωσής της, ήταν γνωστή στους ανθρώπου από την [[Προϊστορία]] ως μεθυστικό συστατικό των αλκοολούχων ποτών. Αποξηραμένο υπόλειμμα 9.000 ετών σε κεραμικό δοχείο βρέθηκε στην [[Κίνα]], γεγονός που δείχνει
ότι [[Νεολιθική Εποχή|νεολιθικοί]] άνθρωποι κατανάλωναν οινοπνευματώδη ποτά<ref name="Roach">Roach, J. (July 18, 2005). "9,000-Year-Old Beer Re-Created From Chinese Recipe". National Geographic News. Retrieved 2007-09-03.</ref>.
ότι [[Νεολιθική Εποχή|νεολιθικοί]] άνθρωποι κατανάλωναν οινοπνευματώδη ποτά<ref name="Roach">Roach, J. (July 18, 2005). "9,000-Year-Old Beer Re-Created From Chinese Recipe". National Geographic News. Retrieved 2007-09-03.</ref>.

Το εμπειρικό όνομα '''«αλκοόλη»''' φαίνεται να προέρχεται από το αραβικό ''Al Cuhl'' (καλλωπιστική σκόνη αντιμονίου αλλά και το προϊόν απόσταξης)<ref>''[http://dictionary.reference.com/browse/alcohol The American Heritage Dictionary of the English Language]'', Fourth Edition, Houghton Mifflin Harcourt, 2009.</ref>, όρος από τον οποίο προέρχεται και η ονομασία ολόκληρης της [[ομόλογη σειρά|υπερομόλογης σειράς]] των [[αλκοόλη|αλκοολών]].


Παρόλο που η [[απόσταξη]] ήταν γνωστή από νωρίς στους [[Ελλάδα|Έλληνες]] και στους [[Αραβία|Άραβες]], η παλαιότερη γνωστή επιστημονική ταυτοποίηση της αιθανόλης ήταν από έναν [[Ιράν|Πέρση]] πολυμαθή, τον [[Μωχάμαντ Ιμπίν Ζακαρίγια Αλ Ραζί|Ραζή]], κατά τον [[9ος αιώνας|9ο αιώνα]]<ref>Ligon, B.Lee (2001). "Rhazes: His career and his writings". Seminars in Pediatric Infectious Diseases 12 (3): 266–272. doi:10.1053/spid.2001.26123.</ref>. Η πρώτη καταγεγραμμένη παραγωγή αλκοόλης από απόσταξη [[οίνος|οίνου]] έγινε από τους [[αλχημεία|αλχημιστές]] της [[Σχολή του Σαλέρνο|Σχολής του Σαλέρνο]] το 12<sup>ο</sup> αιώνα<ref name="Forbes">Forbes, Robert James(1948) ''A short history of the art of distillation'', p.89</ref>. Η πρώτη αναφορά στην «απόλυτη αλκοόλη» (δηλαδή καθαρή (100%) αιθανόλη, |EtOH|), σε αντιδιαστολή με τα γνωστά ως τότε μίγματα αιθανόλης - [[νερό|νερού]], έγινε από τον [[Ράυμοντ Λουλλ]]<ref name="Forbes" />.
Παρόλο που η [[απόσταξη]] ήταν γνωστή από νωρίς στους [[Ελλάδα|Έλληνες]] και στους [[Αραβία|Άραβες]], η παλαιότερη γνωστή επιστημονική ταυτοποίηση της αιθανόλης ήταν από έναν [[Ιράν|Πέρση]] πολυμαθή, τον [[Μωχάμαντ Ιμπίν Ζακαρίγια Αλ Ραζί|Ραζή]], κατά τον [[9ος αιώνας|9ο αιώνα]]<ref>Ligon, B.Lee (2001). "Rhazes: His career and his writings". Seminars in Pediatric Infectious Diseases 12 (3): 266–272. doi:10.1053/spid.2001.26123.</ref>. Η πρώτη καταγεγραμμένη παραγωγή αλκοόλης από απόσταξη [[οίνος|οίνου]] έγινε από τους [[αλχημεία|αλχημιστές]] της [[Σχολή του Σαλέρνο|Σχολής του Σαλέρνο]] το 12<sup>ο</sup> αιώνα<ref name="Forbes">Forbes, Robert James(1948) ''A short history of the art of distillation'', p.89</ref>. Η πρώτη αναφορά στην «απόλυτη αλκοόλη» (δηλαδή καθαρή (100%) αιθανόλη, |EtOH|), σε αντιδιαστολή με τα γνωστά ως τότε μίγματα αιθανόλης - [[νερό|νερού]], έγινε από τον [[Ράυμοντ Λουλλ]]<ref name="Forbes" />.

Έκδοση από την 21:11, 12 Μαρτίου 2014

Το «Αλκοόλ» ανακατευθύνει εδώ. Για άλλες χρήσεις, δείτε: Αλκοόλ (αποσαφήνιση).
Αιθανόλη
Γενικά
Όνομα IUPAC Αιθανόλη
Άλλες ονομασίες Αιθυλική αλκοόλη
Οινόπνευμα
Υδροξυαιθάνιο
Μεθυλοκαρβινόλη
1-Οξαπροπάνιο
Χημικά αναγνωριστικά
Χημικός τύπος C2H6O
Μοριακή μάζα 46,07 amu
Σύντομος
συντακτικός τύπος
C2H5OH
Συντομογραφίες EtOH
Αριθμός CAS 64-17-5
SMILES CCO
InChI 1S/C2H6O/c1-2-3/h3H,2H2,1H3
Αριθμός EINECS 200-578-6
Αριθμός RTECS KQ6300000
Αριθμός UN 1170
PubChem CID 702
ChemSpider ID 682
Δομή
Διπολική ροπή 1,69 D
Ισομέρεια
Ισομερή θέσης 1
Διμεθυλαιθέρας
Φυσικές ιδιότητες
Σημείο τήξης −114 °C
Σημείο βρασμού 78 °C
Πυκνότητα 789 kg/m3
Διαλυτότητα
στο νερό
Ανάμιξη σε κάθε αναλογία
Ιξώδες 1,5 mPa·s (20 °C)
Δείκτης διάθλασης ,
nD
1,36
Τάση ατμών 5,95 kPa (20 °C)
Εμφάνιση Άχρωμο υγρό
Χημικές ιδιότητες
pKa 15,9
Ελάχιστη θερμοκρασία
ανάφλεξης
13-14 °C
Σημείο αυτανάφλεξης 362 °C
Επικινδυνότητα
Eύφλεκτη (F)
Φράσεις κινδύνου R11
Φράσεις ασφαλείας (S2), S7, S16
LD50 5,628 g/kg
Κίνδυνοι κατά
NFPA 704

3
2
0
 
Εκτός αν σημειώνεται διαφορετικά, τα δεδομένα αφορούν υλικά υπό κανονικές συνθήκες περιβάλλοντος (25°C, 100 kPa).

Η αιθανόλη[1] είναι μια οργανική χημική ένωση, που περιέχει άνθρακα, υδρογόνο και οξυγόνο, με χημικός τύπος C2H6O, αν και παριστάνεται συχνά και με τους τύπους C2H5SH, CH3CH2OH και EtOH. Οι τύποι αυτοί δείχνουν ότι το μόριο της αιθανόλης αποτελείται από μια αιθυλομάδα και μια «υδροξυλομάδα» (OH). Η αιθανόλη ανήκει στην ομόλογη σειρά των «αλκανολών», δηλαδή των άκυκλων κορεσμένων μονοαλκοολών. Έχει ένα ισομερές θέσης, το διμεθυλαιθέρα (CH3OCH3). Η καθαρή («απόλυτη») αιθανόλη, στις «συνηθισμένες συνθήκες», δηλαδή θερμοκρασία 25°C και πίεση 1 atm, είναι ένα πτητικό, εύφλεκτο και άχρωμο υγρό. Είναι ένα ψυχοενεργό ναρκωτικό, και ένα από τα παλαιότερα ψυχαγωγικά ποτά, που ακόμη χρησιμοποιείται για αυτόν το σκοπό από τους ανθρώπους. Η αιθανόλη μπορεί να προκαλέσει αλκοολική δηλητηρίαση, όταν καταναλωθεί. Είναι η πιο γνωστή αλκοόλη, και βρίσκεται στα αλκοολούχα ποτά, σε ειδικά θερμόμετρα, ως διαλύτης και ως καύσιμο. Είναι γνωστή στην καθομιλουμένη και απλά ως «αλκοόλη»

Η ζύμωση της ζάχαρη σε αιθανόλη είναι μια από τις πρώτες γνωστές βιοχημικές αντιδράσεις που ανακάλυψε η ανθρωπότητα. Τα μεθυστικά αποτελέσματα της κατανάλωσης αιθανόλης είναι γνωστά από την αρχαιότητα (τουλάχιστον). Στη σύγχρονη εποχή, η αιθανόλη που παράγεται για βιομηχανική χρήση παράγεται επίσης και από το αιθένιο[2].

Η αιθανόλη χρησιμοποιείται ευρύτατα ως διαλύτης διαφόρων ουσιών που προορίζονται για ανθρώπινη επαφή ή κατανάλωση, που περιλαμβάνουν αρώματα, αρωματικές ουσίες, χρωστικές ουσίες και φάρμακα. Στη Χημεία χρησιμοποιείται τόσο ως διαλύτης όσο και ως πρώτη ύλη για τη σύνθεση άλλων προϊόντων. Έχει μια μακριά ιστορία ως καύσιμο παραγωγής θερμότητας, φωτός και, πιο πρόσφατα, ως καύσιμο για κινητήρες εσωτερικής καύσης.

Ονοματολογία

Η ονομασία «αιθανόλη» (δείτε και την «ιστορία» παρακάτω) προέρχεται από την ονοματολογία κατά IUPAC. Συγκεκριμένα, το πρόθεμα «αιθ-» δηλώνει την παρουσία δύο (2) ατόμων άνθρακα ανά μόριο της ένωσης, το ενδιάμεσο «-αν-» δείχνει την παρουσία μόνο απλών δεσμών μεταξύ ατόμων άνθρακα στο μόριο και η κατάληξη «-όλη» φανερώνει ότι περιέχει ένα υδροξύλιο ως κύρια χαρακτηριστική ομάδα, δηλαδή ότι πρόκειται για αλκοόλη.

Η ονομασία «υδροξυαιθάνιο» προέρχεται από την «ονοματολογία υποκατάστασης», κατά την οποία η ένωση υποτίθεται ότι είναι αιθάνιο, του οποίου ένα άτομο υδρογόνου υποκαθίσταται από υδροξύλιο.

Η ονομασία «1-οξαπροπάνιο» προέρχεται από την «ονοματολογία αντικατάστασης», κατά την οποία η ένωση υποτίθεται ότι είναι προπάνιο, του οποίου το #1 άτομο άνθρακα έχει αντικατασταθεί από οξυγόνο. Η αντικατάσταση αυτή εννοεί ότι αφαιρούνται και δύο (2) άτομα υδρογόνου, σε σχέση με το προπάνιο, γιατί ο άνθρακας είναι τετρασθενής, ενώ το οξυγόνο δισθενές.

Το πρόθεμα «αιθυλ-», που χρησιμοποποιείται στην εμπειρική ονομασία «αιθυλική αλκοόλη», επινοήθηκε το 1834 από το Γερμανό χημικό Γιούστους φον Λίμπιγκ (Justus Lebig)[3]. Το «αιθυλ-» είναι ένας νεολογισμός που προήλθε από τη σύνθεση της γαλλικής λέξης ether, που έχει την έννοια της «πτητικής ουσίας», δηλαδή κάθε ουσίας που εξατμίζεται ή εξαχνώνεται γρήγορα σε θερμοκρασία δωματίου (20°C), και της ελληνικής λέξης ὓλη, με την έννοια της ύλης[4] ή και του ξύλου, γιατί το «-υλο» χρησιμοποιήθηκε αρχικά για τη μεθανόλη, που ονομάστηκε αρχικά «μεθυλική αλκοόλη», ενώ ταυτόχρονα είχε και την εμπειρική ονομασία «ξυλόπνευμα», επειδή παράγονταν με την ξηρή απόσταξη ξύλου.

Η ονομασία «αιθανόλη» επινοήθηκε ως ένα αποτέλεσμα μιας λύσης που υιοθετήθηκε στο Διεθνές Συνέδριο Χημικής Ονοματολογίας (International Conference on Chemical Nomenclature) που έγινε τον Απρίλιο του 1892 στη Γενέβη, της Ελβετίας[5].

Ο όρος «αλκοόλη», που τώρα αναφέρεται στην ευρύτερη κατηγορία των αλκοολών, αλλά στην καθομιλουμένη ακόμη αναφέρεται αποκλειστικά στην αιθανόλη, είναι τελικά ένα μεσσαιωνικό «δάνειο» από την Αραβική al-kuḥl[6][7], που η χρήση του, με τη σημερινή έννοια της αιθανόλης, υιοθετήθηκε από τα μέσα του 18ου αιώνα. Πριν από το 18ο αιώνα, η μεσσαιωνική λατινική λέξη alcohol αναφέρονταν σε «κονιοποιημένο ορυκτό αντιμονίου, κονιοποιημένο κοσμητικό», αλλά αργότερα, κατα το 17ο αιώνα, σήμαινε «κάθε εξαχνωμένη ουσία ή απεσταγμένο οινόπνευμα», όπως καταγράφηκε το 1753. Η συστηματική χρήση του όρου «αλκοόλη» στη χημεία χρονολογείται από το 1850.

Μοριακή δομή

Δεσμοί[8]
Δεσμός τύπος δεσμού ηλεκτρονική δομή Μήκος δεσμού Ιονισμός
C-H σ 2sp3-1s 109 pm 3% C- H+
C-C σ 2sp3-2sp3 154 pm
C-O σ 2sp3-2sp3 150 pm 19% C+ O-
O-H σ 2sp3-1s 96 pm 32% H+ O-
Κατανομή φορτίων
σε ουδέτερο μόριο
O -0,51
C#2 -0,09
H (C-H) +0,03
C#1 +0,13
H (O-H) +0,32

Ιστορία

Η ζύμωση της ζάχαρης σε αιθανόλη ήταν μια από τις πιο παλιές βιοτεχνολογίες που εφάρμοσαν οι άνθρωποι. Η αιθανόλη, και τα μεθυστικά αποτελέσματα της κατανάλωσής της, ήταν γνωστή στους ανθρώπου από την Προϊστορία ως μεθυστικό συστατικό των αλκοολούχων ποτών. Αποξηραμένο υπόλειμμα 9.000 ετών σε κεραμικό δοχείο βρέθηκε στην Κίνα, γεγονός που δείχνει ότι νεολιθικοί άνθρωποι κατανάλωναν οινοπνευματώδη ποτά[9].

Παρόλο που η απόσταξη ήταν γνωστή από νωρίς στους Έλληνες και στους Άραβες, η παλαιότερη γνωστή επιστημονική ταυτοποίηση της αιθανόλης ήταν από έναν Πέρση πολυμαθή, τον Ραζή, κατά τον 9ο αιώνα[10]. Η πρώτη καταγεγραμμένη παραγωγή αλκοόλης από απόσταξη οίνου έγινε από τους αλχημιστές της Σχολής του Σαλέρνο το 12ο αιώνα[11]. Η πρώτη αναφορά στην «απόλυτη αλκοόλη» (δηλαδή καθαρή (100%) αιθανόλη, |EtOH|), σε αντιδιαστολή με τα γνωστά ως τότε μίγματα αιθανόλης - νερού, έγινε από τον Ράυμοντ Λουλλ[11].

Το 1796, ο Γιόχανν Τομπίας Λόουιτζ παρήγαγε καθαρή αιθανόλη φιλτράροντας αποσταγμένη αιθανόλη διαμέσου ενεργού άνθρακα. Ο Αντονίν Λαβουασιέ περιέγραψε την αιθανόλη ως χημική ένωση άνθρακα, υδρογόνου και οξυγόνου και το 1808 ο Νίκολας - Θέοντορ ντε Σαουσαίρ επιβεβαίωσε το χημικό τύπο της αιθανόλης[12]. 50 χρόνια αργότερα, ο Άρτσιμπαλ Σκοττ Κούπερ δημοσίευσε το συντακτικό τύπο της αιθανόλης. Ήταν ένας από τους πρώτους συντακτικούς τύπους που επιβεβαιώθηκαν[13].

Η αιθανόλη παρασκευάστηκε για πρώτη φορά συνθετικά το 1826 με ανεξάρτητες προσπάθειες του Χένρυ Χέννελ στη Μεγάλη Βρετανία και του Σέρουλλας στη Γαλλία. Το 1828, ο Μιχαέλ Φαραντάυ παρασκεύασε αιθανόλη με όξινης κατάλυσης υδρόλυση αιθενίου, διεργασία παρόμοια με τη σύγχρονη βιομηχανική σύνθεση αιθανόλης[14].

Η αιθανόλη χρησιμοποιήθηκε ως καύσιμο για λάμπες φωτισμού στις ΗΠΑ από το 1840, αλλά η καθιέρωση φορολογούμενης βιομηχανικής αιθανόλης κατά τον Εμφύλιο Πόλεμο έκανε αυτήν την πρακτική αντιοικονομική. Ο φόρος αυτός καταργήθηκε το 1906[15], με αποτέλεσμα τα κλασσικά μοντέλα Φορντ Μόντελ Τ να κινούνται με αιθανόλη ως το 1908[16]. Το 1920 όμως με την Ποτοαπαγόρευση οι παραγωγοί καυσίμων αιθανόλης κατηγορήθηκαν ότι συμμάχησαν με τους λαθρέμπορους αλκοολούχων ποτών[15] και η κατανάλωση αιθανόλης ως καυσίμων έπεσε και πάλι σε δυσμένεια μέχρι τα τέλη του 20ού αιώνα.

Παραγωγή

Βιομηχανική

Βιοχημικά

1. Με αλκοολική ζύμωση γλυκόζης[17]:

2. Με αλκοολική ζύμωση ζάχαρης:

Από αιθένιο

Από το αιθένιο (παράγωγο του πετρελαίου και του φυσικού αερίου) παρουσία οξέος, συνήθως θειικού οξέος, φωσφορικού οξέος ή οξειδίου του αργιλίου, που είναι «οξύ κατά Lewis»[18]:

Εργαστηριακή

  • Οι παρακάτω μέθοδοι πρακτικά δεν εφαρμόζονται, παρά μόνο για την ακαδημαϊκή μελέτη τους:

Από αιθυλαλογονίδια

1. Με υδρόλυση αιθυλαγολογονιδίων (CH3CH2X) παράγεται αιθανόλη[19]:

2. Με επίδραση καρβοξυλικών αλάτων (RCOONa) παράγονται αρχικά καρβοξυλικοί αιθυλεστέρες (RCOOCH2CH3), που υδρολόνται προς αιθανόλη[20]:

Από αιθυλεστέρες

Με υδρόλυση αιθυλεστέρων (RCOOCH2CH3) παράγεται αιθανόλη[21]:

Από αιθανάλη

Με αναγωγή αιθανάλης (CH3CHO):
1. Με καταλυτική υδρογόνωση[22]:

2. Με λιθιοαργιλιοϋδρίδιο (LiAlH4)[23]:

Από αιθανικό οξύ

Με αναγωγή αιθανικού οξέος με LiAlH4[23]:

Από αιθανικό αιθυλεστέρα

O αιθανικός αιθυλεστέρας δίνει αντιδράσεις οξειδοαναγωγής, σχηματίζοντας αιθανόλη[24]:

1. Με νάτριο (Na) και αιθανόλη (CH3CH2OH):

2. Με διυδρογόνο (H2) και νικέλιο (Ni):

3. Με λιθιοαργιλιοτετραϋδρίδιο (LiAlH4):

Από αιθαναμίνη

Με επίδραση νιτρώδους οξέος (ΗΝΟ2) σε αιθαναμίνη [25]:

Από μεθανόλη

Υπάρχουν δύο (2) μέθοδοι για ανοικοδόμηση μεθανόλης προς αιθανόλη[26]:
Αρχίζουν και οι δύο με την παραγωγή ιωδομεθάνιου και μετά αιθανονιτρίλιου:


1. Υδρόλυση αιθανονιτριλίου προς αιθανικό οξύ και μετά αναγωγή προς αιθανόλη:


2. Αναγωγή προς αιθαναμίνη και μετατροπή της τελευταίας σε αιθανόλη:


Από 1-προπανόλη

Με αποικοδόμιση της ανθρακικής αλυσίδας της 1-προπανόλης[26]::





Από διμεθυλαιθέρα

Με επίδραση αλκυλολιθίου (π.χ. μεθυλολιθίου) σε διμεθυλαιθέρα έχουμε τη μετάθεση Wittig, με την οποία παράγεται αιθανόλη και αλκάνιο (μεθάνιο αν είχε χρησιμοποιηθεί μεθυλολίθιο)[27]:

Φυσικές ιδιότητες

Είναι υγρό άχρωμο και ευδιάλυτο στο νερό. Έχει ευχάριστη γεύση και σχετικά ευχάριστη, αν και δριμεία, οσμή. Η αιθανόλη αναμιγνύεται με το νερό σε κάθε αναλογία και κατά την ανάμειξη παρατηρείται ελάττωση όγκου, ενώ εκλύεται θερμότητα. Το μίγμα 95% αλκοόλης και 5% νερού χαρακτηρίζεται ως αζεοτροπικό, επειδή κατά την απόσταξη δεν διαχωρίζονται τα συστατικά του, καθώς ζέουν στην ίδια θερμοκρασία.

Φυσιολογικές ιδιότητες

Κύριο λήμμα: Αλκοολούχο ποτό

Όταν η αιθυλική αλκοόλη καταποθεί σε μικρές ποσότητες, προκαλεί αίσθημα ευφορίας. Σε μεγαλύτερες ποσότητες διαταράσσει την ομαλή λειτουργία του εγκεφάλου, προκαλώντας την κατάσταση που χαρακτηρίζεται ως μέθη (κοινώς μεθύσι). Σε ακόμη μεγαλύτερες ποσότητες προκαλεί απώλεια αισθήσεων και, σε σπάνιες περιπτώσεις, θάνατο. Θανατηφόρος είναι, επίσης, και η ενδοφλέβια χορήγησή της.

Χημικές ιδιότητες και παράγωγα

Αλκοολικά άλατα

1. Αντίδραση με αλκαλιμέταλλα[28]:

2. Αντίδραση με αμίδια μετάλλων[29]::

3. Αντίδραση με αιθινικά μέταλλα[30]::

4. Αντίδραση με αντιδραστήρια Grignard[31]::

Υποκατάσταση από αλογόνα

1. Αντίδραση με υδροϊώδιο[32]:

2. Αντίδραση με άλλα αλογόνα (X: F, Cl, Br)[33]:

3. Αντίδραση με ισχυρά χλωριωτικά μέσα[34]:

1. Με PCl5:

2. Με PCl3[35]:

3. Με SOCl2[36]:

Αιθένιο

Με ενδομοριακή αφυδάτωση αιθανόλης παράγεται αιθένιο. Η αντίδραση ευνοείται σε σχετικά υψηλές θερμοκρασίες, >150 °C. Σε χαμηλότερες ευνοείται η διαμοριακή αφυδάτωση που δίνει διαιθυλαιθέρα, ενώ χωρίς καθόλου θέρμανση παράγεται o όξινος θειικός αιθυλεστέρας (CH3CH2OSO3H), που αποτελεί την ενδιάμεση ένωση για τις αφυδατώσεις.[37]:

  • Πριν την καθιέρωση του πετρελαίου ως βασικής στρατηγικής πρώτης ύλης, χρησιμοποιήθηκε και για βιομηχανική παραγωγή αιθενίου.

Διαιθυλαιθέρας

Παραγωγή διαιθυλαιθέρα[38]:

Καρβοξυλικοί εστέρες

Αντίδραση με ακυλιωτικά μέσα:
1. Εστεροποίηση με καρβοξυλικό οξύ[39]:

2. Εστεροποίηση με ανυδρίτη καρβοξυλικού οξέος[40]:

3. Εστεροποίηση με ακυλαλογονίδιο[41]:

Οξείδωση

1. Με υπερμαγγανικό κάλιο (KMnO4). Παράγεται αιθανικό οξύ[42]:

2. Με τριοξείδιο του χρωμίου (CrO3). Παράγεται αρχικά αιθανάλη και στη συνέχεια, με περίσσεια τριοξειδίου του χρωμίου, αιθανικό οξύ[43]:

Αποικοδόμηση προς μεθανόλη

Με αποικοδόμηση της ανθρακικής αλυσίδας της αιθανόλης παράγεται μεθανόλη[26]::





Ανοικοδόμηση προς 1-προπανόλη

Υπάρχουν δύο (2) μέθοδοι για ανοικοδόμηση αιθανόλης προς 1-προπανόλη[26]:
Αρχίζουν και οι δύο με την παραγωγή αιθυλοϊωδίδιου και μετά προπανονιτρίλιου:


1. Υδρόλυση προπανονιτριλίου προς προπανικό οξύ και μετά αναγωγή προς 1-προπανόλη:


2. Αναγωγή προς 1-προπαναμίνη και μετατροπή της τελευταίας σε 1-προπανόλη:


Ανοικοδόμηση προς 1-βουτανόλη

Αρχίζει με την παραγωγή αιθυλοϊωδίδιου και μετά, με επίδραση οξιρανίου σε αιθυλομαγνησιοϊωδίδιο, παράγεται 1-βουτανόλη[26]:



Οξιράνιο

Προσθήκη σε εποξυαιθάνιο

Με επίδραση σε εποξυαιθάνιο παράγεται 2-αιθοξυαιθανόλη[44]:

Οξιράνιο

Επίδραση καρβενίων

Παρεμβολή καρβενίων, π.χ. με μεθυλενίου παράγονται 1-προπανόλη, 2-προπανόλη και αιθυλομεθυλαιθέρας[45]:

Χρήσεις

Χρησιμοποιείται ως διαλύτης σε πολλές εφαρμογές τόσο της καθημερινής ζωής (π.χ. σε μαρκαδόρους οινοπνεύματος, κόλλες κτλ.) όσο και της βιομηχανίας. Ευρύτατη είναι η χρήση της για την παρασκευή οινοπνευματωδών ποτών, και γι' αυτό το λόγο επιβάλλεται μεγάλη φορολογία. Χρησιμοποιείται, επίσης, ευρύτατα στην ιατρική ως απολυμαντικό. Για οικιακή χρήση και για την αποφυγή καταβολής υψηλής φορολογίας, υφίσταται μετουσίωση, δηλαδή αναμιγνύεται με μικρή ποσότητα πετρελαίου, το οποίο την καθιστά ακατάλληλη προς πόση και από το οποίο είναι αδύνατο να διαχωριστεί με φθηνές μεθόδους. Για να ξεχωρίζει από την μη μετουσιωμένη αιθυλική αλκοόλη, προστίθεται, επίσης, και η χρωστική κυανούν του μεθυλενίου, το οποίο της προσδίδει κυανοπράσινο χρώμα.

Σημαντική χρήση βρίσκει, επίσης, ως καύσιμο σε κινητήρες εσωτερικής καύσεως, αντικαθιστώντας την βενζίνη. Δίδει καυσαέρια πολύ λιγότερο ρυπογόνα, ωστόσο έχει το μειονέκτημα της δυσχερούς ανάφλεξής της, όταν ο κινητήρας είναι κρύος. Σήμερα, η πλειοψηφία των οχημάτων στην Βραζιλία χρησιμοποιεί αιθυλική αλκοόλη ως καύσιμο.

Aναφορές και σημειώσεις

  1. Για εναλλακτικές ονομασίες και συμβολισμούς δείτε τον πίνακα πληροφοριών.
  2. Myers, Richard L.; Myers, Rusty L.|title=The 100 most important chemical compounds: a reference guide|year=2007|publisher=Greenwood Press|location=Westport, Conn.|isbn=0313337586|page=122|url=http://books.google.com/?id=0AnJU-hralEC&pg=PA122
  3. Liebig, Justus (1834) "Ueber die Constitution des Aethers und seiner Verbindungen" (On the constitution of ether and its compounds), Annalen der Pharmacie, 9 : 1–39. From page 18: "Bezeichnen wir die Kohlenwasserstoffverbindung 4C + 10H als das Radikal des Aethers mit E2 und nennen es Ethyl, …" (Let us designate the hydrocarbon compound 4C + 10H as the radical of ether with E2 and name it ethyl …).
  4. Harper, Douglas. "ethyl". Online Etymology Dictionary.
  5. For a report on the 1892 International Conference on Chemical Nomenclature, see: Armstrong, Henry (1892). "The International Conference on Chemical Nomenclature". Nature 46 (1177): 56–59. doi:10.1038/046056c0. Armstrong's report is reprinted with the resolutions in English in: Armstrong, Henry (1892). "The International Conference on Chemical Nomenclature". The Journal of Analytical and Applied Chemistry 6: 390–400 (398). "The alcohols and the phenols will be called after the name of the hydrocarbon from which they are derived, terminated with the suffix ol (ex. pentanol, pentenol, etc.)."
  6. OED; etymonline.com
  7. The American Heritage Dictionary of the English Language, Fourth Edition, Houghton Mifflin Harcourt, 2009.
  8. Τα δεδομένα προέρχονται εν μέρει από το «Table of periodic properties of the Ellements», Sagrent-Welch Scientidic Company και Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, Σελ. 34.
  9. Roach, J. (July 18, 2005). "9,000-Year-Old Beer Re-Created From Chinese Recipe". National Geographic News. Retrieved 2007-09-03.
  10. Ligon, B.Lee (2001). "Rhazes: His career and his writings". Seminars in Pediatric Infectious Diseases 12 (3): 266–272. doi:10.1053/spid.2001.26123.
  11. 11,0 11,1 Forbes, Robert James(1948) A short history of the art of distillation, p.89
  12. Lowitz, T. (1796) "Anzeige eines, zur volkommen Entwasserung des Weingeistes nothwendig zu beobachtenden, Handgriffs" (Report of a task that must be done for the complete dehydration of wine spirits [i.e., alcohol-water azeotrope]), (Crell's) Chemische Annalen …, vol. 1, pp. 195–204. See pp. 197–198: Lowitz dehydrated the azeotrope by mixing it with a 2:1 excess of anhydrous alkali and then distilling the mixture over low heat.
  13. Couper AS (1858). «On a new chemical theory» (online reprint). Philosophical magazine 16 (104–16). http://web.lemoyne.edu/~giunta/couper/couper.html. Ανακτήθηκε στις 2007-09-03. 
  14. Hennell, H. (1828). «On the mutual action of sulfuric acid and alcohol, and on the nature of the process by which ether is formed». Philosophical Transactions 118: 365. doi:10.1098/rstl.1828.0021. 
  15. 15,0 15,1 Siegel, Robert (2007-02-15). «Ethanol, Once Bypassed, Now Surging Ahead». NPR. http://www.npr.org/templates/story/story.php?storyId=7426827. Ανακτήθηκε στις 2007-09-22. 
  16. DiPardo, Joseph. «Outlook for Biomass Ethanol Production and Demand» (PDF). United States Department of Energy. Ανακτήθηκε στις 22 Σεπτεμβρίου 2007. 
  17. Morais PB, Rosa CA, Linardi VR, Carazza F, Nonato EA (1996). «Production of fuel alcohol by Saccharomyces strains from tropical habitats». Biotechnology Letters 18 (11): 1351. doi:10.1007/BF00129969. 
  18. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 156, §6.8.3.
  19. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.197, §8.2.3α.
  20. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.197, §8.2.3β.
  21. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.198, §8.2.5.
  22. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 218, §9.2.2.
  23. 23,0 23,1 Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 197, §8.2.2α.
  24. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 307, §13.7.5.
  25. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.198, §8.2.6.
  26. 26,0 26,1 26,2 26,3 26,4 Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.198, §8.2.7.
  27. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.201, §8.5.4.
  28. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.2.4α.
  29. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.2.4β.
  30. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.2.4γ.
  31. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.2.4δ.
  32. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.4.2β.
  33. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.4.2γ.
  34. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.4.3α.
  35. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.4.3β.
  36. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.4.3γ.
  37. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.153, §6.3.3.
  38. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.4.5β.
  39. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.4.4α.
  40. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.4.4β.
  41. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.199, §8.4.4γ.
  42. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.200, §8.4.6α.
  43. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.200, §8.4.6β.
  44. Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985, §2.1., σελ. 16-17, εφαρμογή γενικής αντίδρασης για Nu = CH3CH2O-.
  45. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 155, §6.7.3, R = CH2OH.

Πηγές

  • Γ. Βάρβογλη, Ν. Αλεξάνδρου, Οργανική Χημεία, Αθήνα 1972
  • Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991
  • SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999
  • Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982
  • Δημήτριου Ν. Νικολαΐδη: Ειδικά μαθήματα Οργανικής Χημείας, Θεσσαλονίκη 1983.
  • Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985
CC-BY-SA
Μετάφραση
Στο λήμμα αυτό έχει ενσωματωθεί κείμενο από το λήμμα Ethanol της Αγγλικής Βικιπαίδειας, η οποία διανέμεται υπό την GNU FDL και την CC-BY-SA 4.0. (ιστορικό/συντάκτες).

Πρότυπο:Link GA