Αναεροβική αναπνοή: Διαφορά μεταξύ των αναθεωρήσεων

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Περιεχόμενο που διαγράφηκε Περιεχόμενο που προστέθηκε
Sanya3 (συζήτηση | συνεισφορές)
Χωρίς σύνοψη επεξεργασίας
μ r2.7.2) (Ρομπότ: Προσθήκη: eu:Arnasketa anaerobio; διακοσμητικές αλλαγές
Γραμμή 2: Γραμμή 2:


Οι χημικές αντιδράσεις της αναερόβιας αναπνοής ακολουθούν δύο στάδια:
Οι χημικές αντιδράσεις της αναερόβιας αναπνοής ακολουθούν δύο στάδια:
* <u>1ο στάδιο</u>: [[Γλυκόλυση]], όπου η γλυκόζη μετατρέπεται σε δύο μόρια [[πυροσταφυλικό οξύ|πυροσταφυλικού οξέος]] στο [[κυτταρόπλασμα]] του κυττάρου. Οι αντιδράσεις αυτές είναι ίδιες με αυτές της αεροβικής αναπνοής, όμως στην αναερόβια η απουσία οξυγόνου εμποδίζει την [[οξείδωση]] των δύο μορίων περιορισμένου [[NAD]] (Nicotinamide adenine dinucleotide, αδενινονικοτιναμιδοδινουκλεοτίδιο) που δημιουργείται μέσω του [[σύστημα μεταφοράς ηλεκτρονίων|συστήματος μεταφοράς ηλεκτρονίων]] ([[ETS]]) στα [[μιτοχόνδρια]]. Αντ' αυτού παράγεται [[ATP]], ([[τριφωσφορική αδενοσίνη]]), από την [[ADP]], ([[διφωσφορική αδενοσίνη]]), με [[φωσφορυλίωση επιπέδου υποστρώματος]]. Έτσι το καθαρό παράγωγο ATP ([[τριφωσφορική αδενοσίνη]]), κατά την αναπνοή αυτού του τύπου, το αποτελούν μόνο 2 μόρια, (4, μείον 2) που χρησιμοποιήθηκαν στην αρχική [[φωσφορυλίωση]]).
* <u>1ο στάδιο</u>: [[Γλυκόλυση]], όπου η γλυκόζη μετατρέπεται σε δύο μόρια [[πυροσταφυλικό οξύ|πυροσταφυλικού οξέος]] στο [[κυτταρόπλασμα]] του κυττάρου. Οι αντιδράσεις αυτές είναι ίδιες με αυτές της αεροβικής αναπνοής, όμως στην αναερόβια η απουσία οξυγόνου εμποδίζει την [[οξείδωση]] των δύο μορίων περιορισμένου [[NAD]] (Nicotinamide adenine dinucleotide, αδενινονικοτιναμιδοδινουκλεοτίδιο) που δημιουργείται μέσω του [[σύστημα μεταφοράς ηλεκτρονίων|συστήματος μεταφοράς ηλεκτρονίων]] ([[ETS]]) στα [[μιτοχόνδρια]]. Αντ' αυτού παράγεται [[ATP]], ([[τριφωσφορική αδενοσίνη]]), από την [[ADP]], ([[διφωσφορική αδενοσίνη]]), με [[φωσφορυλίωση επιπέδου υποστρώματος]]. Έτσι το καθαρό παράγωγο ATP ([[τριφωσφορική αδενοσίνη]]), κατά την αναπνοή αυτού του τύπου, το αποτελούν μόνο 2 μόρια, (4, μείον 2) που χρησιμοποιήθηκαν στην αρχική [[φωσφορυλίωση]]).
* <u>2ο στάδιο</u>: Μετά την παραγωγή των πυροσταφυλικών μπορεί να εμφανιστούν δύο εναλλακτικές οδοί. Στους μεν [[φυτά|φυτικούς οργανισμούς]] και σε πολλούς [[μικροοργανισμός|μικροοργανισμούς]] το πυροσταφυλικό οξύ διασπάται σε [[αιθανόλη]] μέσω [[αιθανάλη|αιθανάλης]] ([[ακεταλδεΰδη]]ς), με μια αντίδραση που ονομάζεται [[αλκοολική ζύμωση]], η οποία και απαιτεί [[υδρογόνο]] από το [[NADH]]. Στους δε [[ζώα|ζωικούς οργανισμούς]] το πυροσταφυλικό οξύ μετατρέπεται σε [[γαλακτικό οξύ]] με μια διαδικασία που ονομάζεται [[ζύμωση γαλακτικού οξέος]], η οποία επίσης απαιτεί υδρογόνο από το NADH.
* <u>2ο στάδιο</u>: Μετά την παραγωγή των πυροσταφυλικών μπορεί να εμφανιστούν δύο εναλλακτικές οδοί. Στους μεν [[φυτά|φυτικούς οργανισμούς]] και σε πολλούς [[μικροοργανισμός|μικροοργανισμούς]] το πυροσταφυλικό οξύ διασπάται σε [[αιθανόλη]] μέσω [[αιθανάλη|αιθανάλης]] ([[ακεταλδεΰδη]]ς), με μια αντίδραση που ονομάζεται [[αλκοολική ζύμωση]], η οποία και απαιτεί [[υδρογόνο]] από το [[NADH]]. Στους δε [[ζώα|ζωικούς οργανισμούς]] το πυροσταφυλικό οξύ μετατρέπεται σε [[γαλακτικό οξύ]] με μια διαδικασία που ονομάζεται [[ζύμωση γαλακτικού οξέος]], η οποία επίσης απαιτεί υδρογόνο από το NADH.
Επισημαίνεται ο σπουδαίος ρόλος του NADH και στους δύο τύπους ζυμώσεων του 2ου σταδίου. Επειδή η ποσότητα NAD που βρίσκεται στο κύτταρο είναι περιορισμένη, η γλυκόλυση θα σταματούσε γρήγορα αν η αναεροβική αναπνοή σταματούσε στο πυροσταφυλικό οξύ. Συνεχίζοντας όμως προς την αιθανόλη ή το γαλακτικό οξύ, απελευθερώνεται NAD κατά τη ζύμωση για να επέλθει στη γλυκόλυση με συνέπεια να καταστεί δυνατή η συνέχεια του καταβολισμού της γλυκόζης. Η δε απόδοση σε [[ATP]] κατά την αναεροβική αναπνοή είναι μικρή, και τούτο διότι, αφενός μεν δεν μπορεί να χρησιμοποιηθεί το [[ETS]] χωρίς οξυγόνο, και αφετέρου τα τελικά προϊόντα εξακολουθούν να περιέχουν αρκετά μεγάλα ποσά ενέργειας.<br>
Επισημαίνεται ο σπουδαίος ρόλος του NADH και στους δύο τύπους ζυμώσεων του 2ου σταδίου. Επειδή η ποσότητα NAD που βρίσκεται στο κύτταρο είναι περιορισμένη, η γλυκόλυση θα σταματούσε γρήγορα αν η αναεροβική αναπνοή σταματούσε στο πυροσταφυλικό οξύ. Συνεχίζοντας όμως προς την αιθανόλη ή το γαλακτικό οξύ, απελευθερώνεται NAD κατά τη ζύμωση για να επέλθει στη γλυκόλυση με συνέπεια να καταστεί δυνατή η συνέχεια του καταβολισμού της γλυκόζης. Η δε απόδοση σε [[ATP]] κατά την αναεροβική αναπνοή είναι μικρή, και τούτο διότι, αφενός μεν δεν μπορεί να χρησιμοποιηθεί το [[ETS]] χωρίς οξυγόνο, και αφετέρου τα τελικά προϊόντα εξακολουθούν να περιέχουν αρκετά μεγάλα ποσά ενέργειας.<br />
Συνέπεια των παραπάνω είναι ότι τελικά η ενέργεια που απελευθερώνεται και στη συνέχεια αποθηκεύεται αποτελεί ένα μόνο κλάσμα της ποσότητας που παράγεται κατά τη πλήρη [[οξείδωση]] της γλυκόζης.
Συνέπεια των παραπάνω είναι ότι τελικά η ενέργεια που απελευθερώνεται και στη συνέχεια αποθηκεύεται αποτελεί ένα μόνο κλάσμα της ποσότητας που παράγεται κατά τη πλήρη [[οξείδωση]] της γλυκόζης.



[[Κατηγορία:Μικροβιολογία]]
[[Κατηγορία:Μικροβιολογία]]
[[Κατηγορία:Μεταβολισμός]]
[[Κατηγορία:Μεταβολισμός]]
[[Κατηγορία: Βιολογικοί όροι]]
[[Κατηγορία:Βιολογικοί όροι]]


[[ca:Respiració anaeròbica]]
[[ca:Respiració anaeròbica]]
Γραμμή 17: Γραμμή 16:
[[es:Respiración anaeróbica]]
[[es:Respiración anaeróbica]]
[[et:Anaeroobne hingamine]]
[[et:Anaeroobne hingamine]]
[[eu:Arnasketa anaerobio]]
[[fr:Respiration anaérobie]]
[[fr:Respiration anaérobie]]
[[ja:嫌気呼吸]]
[[ja:嫌気呼吸]]

Έκδοση από την 21:58, 6 Δεκεμβρίου 2011

Η λεγόμενη στη Βιολογία αναερόβια ή αναεροβική αναπνοή, (anaerobic respiration) αποτελεί ένα τύπο κυτταρικής αναπνοής, που πραγματοποιείται στους αναερόβιους οργανισμούς, κατά την οποία η ενέργεια απελευθερώνεται από τη γλυκόζη ή άλλες τροφές, άνευ παρουσίας οξυγόνου.

Οι χημικές αντιδράσεις της αναερόβιας αναπνοής ακολουθούν δύο στάδια:

Επισημαίνεται ο σπουδαίος ρόλος του NADH και στους δύο τύπους ζυμώσεων του 2ου σταδίου. Επειδή η ποσότητα NAD που βρίσκεται στο κύτταρο είναι περιορισμένη, η γλυκόλυση θα σταματούσε γρήγορα αν η αναεροβική αναπνοή σταματούσε στο πυροσταφυλικό οξύ. Συνεχίζοντας όμως προς την αιθανόλη ή το γαλακτικό οξύ, απελευθερώνεται NAD κατά τη ζύμωση για να επέλθει στη γλυκόλυση με συνέπεια να καταστεί δυνατή η συνέχεια του καταβολισμού της γλυκόζης. Η δε απόδοση σε ATP κατά την αναεροβική αναπνοή είναι μικρή, και τούτο διότι, αφενός μεν δεν μπορεί να χρησιμοποιηθεί το ETS χωρίς οξυγόνο, και αφετέρου τα τελικά προϊόντα εξακολουθούν να περιέχουν αρκετά μεγάλα ποσά ενέργειας.
Συνέπεια των παραπάνω είναι ότι τελικά η ενέργεια που απελευθερώνεται και στη συνέχεια αποθηκεύεται αποτελεί ένα μόνο κλάσμα της ποσότητας που παράγεται κατά τη πλήρη οξείδωση της γλυκόζης.