Διαφορά μεταξύ των αναθεωρήσεων του «Βιρασένα»

Μετάβαση στην πλοήγηση Πήδηση στην αναζήτηση
Καμία αλλαγή στο μέγεθος ,  πριν από 9 έτη
μ
Fix cite template param names, editor-first1 -> editor1-first, editor-first2 -> editor2-first, editor-last1 -> editor1-last, editor-last2 -> editor2-last, using AWB (7701)
(Clarify Virasena's approximation to pi)
μ (Fix cite template param names, editor-first1 -> editor1-first, editor-first2 -> editor2-first, editor-last1 -> editor1-last, editor-last2 -> editor2-last, using AWB (7701))
}}</ref>.
 
Virasena was a noted mathematician. He gave the derivation of the [[volume]] of a [[frustum]] by a sort of infinite procedure. He worked with the concept of ''ardhaccheda'': the number of times a number could be divided by 2; effectively logarithms to base 2. He also worked with logarithms in base 3 (trakacheda) and base 4 (caturthacheda).<ref>{{citation| contribution=History of Mathematics in India|title=Students' Britannica India: Select essays|editoreditor1-first1first=Dale|editoreditor1-last1last=Hoiberg|editoreditor2-first2first=Indu|editoreditor2-last2last=Ramchandani|first=R. C.|last=Gupta|page=329|publisher=Popular Prakashan|year=2000| contribution-url=http://books.google.co.uk/books?id=-xzljvnQ1vAC&pg=PA329&lpg=PA329&dq=Virasena+logarithm&source=bl&ots=BeVpLXxdRS&sig=_h6VUF3QzNxCocVgpilvefyvxlo&hl=en&ei=W0xUTLyPD4n-4AatvaGnBQ&sa=X&oi=book_result&ct=result&resnum=2&ved=0CBgQ6AEwATgK#v=onepage&q=Virasena%20logarithm&f=false}}</ref>
 
Virasena gave the approximate formula ''C''&nbsp;=&nbsp;3''d''&nbsp;+&nbsp;(16''d''+16)/113 to relate the circumference of a circle, ''C'', to its diameter, ''d''. For large values of ''d'', this gives the approximation &pi;&nbsp;≈&nbsp;355/113&nbsp;=&nbsp;3.14159292..., which is more accurate than the approximation &pi;&nbsp;≈&nbsp;3.1416 given by [[Aryabhata]] in the ''[[Aryabhatiya]]''.<ref>{{Citation
0

επεξεργασίες

Μενού πλοήγησης