Αρχή της απροσδιοριστίας
Το λήμμα δεν περιέχει πηγές ή αυτές που περιέχει δεν επαρκούν. |
Η αρχή της απροσδιοριστίας ή διαφορετικά αρχή της αβεβαιότητας είναι βασικό αξίωμα της κβαντικής μηχανικής που διατυπώθηκε για πρώτη φορά το 1927 από τον Βέρνερ Χάιζενμπεργκ (Werner Heisenberg, 1901 - 1976). Σύμφωνα με την αρχή της απροσδιοριστίας είναι αδύνατο να μετρηθεί ταυτόχρονα και με ακρίβεια, ούτε πρακτικά, ούτε και θεωρητικά η θέση και η ταχύτητα, ή ορμή, ενός σωματίου.
Εν αντιθέσει με την αρχή της αιτιοκρατίας, σύμφωνα με την αρχή της απροσδιοριστίας υπάρχουν γεγονότα των οποίων η εκδήλωση δεν υπαγορεύεται από κάποια αιτία.
Η απροσδιοριστία αυτή δεν αναφέρεται στην ανικανότητα του ανθρώπου να παρατηρήσει ορισμένα φαινόμενα στον μικρόκοσμο (ούτε αποτελεί φιλοσοφική αγνωσία) αλλά σε μία πραγματική ιδιότητα του Φυσικού Κόσμου, η οποία εμφανίζεται και πειραματικά. Ο λόγος που δεν βλέπουμε αυτή την αβεβαιότητα στην καθημερινότητα είναι ότι εμφανίζεται σε πολύ μικρή κλίμακα και γίνεται κυρίως εμφανής στον μικρόκοσμο.
Εκφράσεις
[Επεξεργασία | επεξεργασία κώδικα]Η βασική έκφραση της αρχής της απροσδιοριστίας είναι αυτή του 1927:
Εάν μετράμε τη θέση ενός σωματίου με αβεβαιότητα και ταυτόχρονα μετράμε την ορμή του με αβεβαιότητα , τότε το γινόμενο των δύο μεγεθών δεν μπορεί να είναι μικρότερο από έναν αριθμό της τάξης του , όπου (προφέρεται "h-bar") η ανηγμένη σταθερά του Πλανκ, . Δηλαδή:
Οι αβεβαιότητες των μεγεθών θέσης και ορμής και ισούνται με τη διασπορά τους γύρω από τη μέση τους τιμή. Ο ίδιος ο Χάιζενμπεργκ εξήγησε ότι η ελάχιστη αβεβαιότητα στη μέτρηση των και δεν είναι πειραματικό σφάλμα, δεν οφείλεται δηλαδή στις ατέλειες των πειραματικών συσκευών, αλλά προκύπτει από τη δομή της ύλης καθεαυτήν. Πιο συγκεκριμένα, η σχέση αβεβαιότητας είναι άμεση συνέπεια του κυματοσωματιδιακού δυϊσμού της ύλης. Σε θεωρητικό επίπεδο, είναι αποτέλεσμα των μεταθετικών σχέσεων ανάμεσα στους κβαντομηχανικούς τελεστές θέσης και ορμής.
Η σχέση αβεβαιότητας ισχύει για μεγέθη που μετρούνται στον ίδιο άξονα, για παράδειγμα για το ζευγάρι , . Όλα τα υπόλοιπα ζεύγη μεγεθών σε διαφορετικούς άξονες μπορούν να μετρηθούν ταυτόχρονα με απόλυτη ακρίβεια.
Υπάρχουν και άλλες εκφράσεις της αρχής της απροδιοριστίας. Μια από αυτές είναι η εξής:
Αυτό σημαίνει ότι υπάρχει όριο στην ακρίβεια που μπορούμε να μετρήσουμε την ενέργεια ενός συστήματος, αν το σύστημα παραμένει σε μια δεδομένη ενεργειακή κατάσταση για χρόνο .
Θεμελιώδη αποτελέσματα για την απόδειξη των παραπάνω ανισοτήτων είναι αυτά του W. Heisenberg[1][2] σχετικά με τους μεταθέτες των τελεστών (θέση με τον συμβολισμό της αναλυτικής μηχανικής, ορμή) και (ενέργεια και χρόνος):
και
Το θεώρημα
[Επεξεργασία | επεξεργασία κώδικα]Περιγραφή και απόδειξη
[Επεξεργασία | επεξεργασία κώδικα]Από μαθηματικής σκοπιάς η αρχή της απροσδιοριστίας ισοδυναμεί με ένα θεώρημα[3] για τους τελεστές.
Συγκεκριμένα έστω και αυτοσυζυγείς τελεστές (δηλαδή ). Οι τελεστές στην κβαντομηχανική αντιστοιχούν στις φυσικές ποσότητες όπως η θέση, η ορμή, η ενέργεια, η στροφορμή μιας κατάστασης. Αν έχουμε μια κατάσταση (ή επίσης γράφεται ). Τότε η "μέση τιμή" του μεγέθους υπολογίζεται ως (εσωτερικό γινόμενο της κατάστασης με την κατάσταση ) πράγμα που γράφεται πιο φυσικά ως . Δηλαδή:
Τώρα ο τελεστής έχει μέση τιμή μηδέν. Μπορούμε να ορίσουμε την αβεβαιότητα του ως:
Μια άλλη χρήσιμη έννοια είναι ο μεταθέτης δύο τελεστών , που γράφεται ως .
Από κβαντομηχανικής άποψης το σημαίνει ότι πρώτα κάνουμε την μέτρηση του και μετά του ενώ σημαίνει πρώτα του και μετά του . Δηλαδή η σειρά με την οποία γίνεται η μέτρηση ενός τελεστή επί μιας κατάστασης , είναι αυτή με την οποία δρα ο τελεστής στην κατάσταση: .
Μπορεί να δείξει κανείς πως το μέτρο της μέσης τιμής δύο τελεστών σχετίζεται με τις μέσες τιμές των τελεστών με την ακόλουθη σχέση:
Ακόμη, βάσει της παραπάνω σχέσης μπορεί να δείξει κανείς την ακόλουθη σχέση μεταξύ του μέτρου της μέσης τιμής ενός μεταθέτη και της διασποράς του κάθε τελεστή:
Αυτό μας δίνει τον γενικό τύπο της αρχής της αβεβαιότητας
Εφαρμογή στην ανισότητα θέσης ορμής
[Επεξεργασία | επεξεργασία κώδικα]Χρησιμοποιώντας το παραπάνω θεώρημα, και την μεταθετική σχέση παίρνουμε:
Όμοια δείχνει κανείς και την ανισότητα μεταξύ στις αβεβαιότητες ενέργειας και χρόνου.
Λανθασμένη γενίκευση
[Επεξεργασία | επεξεργασία κώδικα]Λανθασμένα πολλές φορές, γενικεύεται η αρχή της απροδιοριστίας σε φαινόμενα της καθημερινής ζωής, όπως και η θεωρία της σχετικότητας, στο σύνολο της ή σπανιότερα σε τμήματά της. Τόσο η αρχή της απροσδιοριστίας, όσο και η θεωρία της σχετικότητας, αναφέρονται σε φαινόμενα που συμβαίνουν σε σχετικά πολύ μικρά μήκη ή πολύ μεγάλες ταχύτητες, αντίστοιχα. Αυτό έχει ως συνέπεια η ισχύς τους να περιορίζεται κατά πολύ μεγάλο βαθμό στην κλασσική φυσική, η οποία και περιγράφει τα φαινόμενα που γίνονται αντιληπτά από εμάς καθημερινά. Ειδικότερα για την αρχή της απροσδιοριστίας, αυτό μπορεί να γίνει άμεσα αντιληπτό από την μαθηματική έκφρασή της: η σταθερά έχει πολύ μικρή τιμή (1,054 572 66 × 10−34 ± 66 J·s) συγκρινόμενη με τις αποστάσεις και τις ταχύτητες που μπορούμε να μετρήσουμε πρακτικά έξω από το χώρο του εργαστηρίου.
Βιβλιογραφία
[Επεξεργασία | επεξεργασία κώδικα]- "Physics For Scientists & Engineers, Τόμος IV, Σύγχρονη Φυσική", Third Edition, Raymond A. Serway, Μεταφρ. Λεωνίδα Κ. Ρεσβάνη
- «Κβαντομηχανική Ι», Σ. Η. Μάσεν, 2011
- «Εισαγωγή στην Κβαντομηχανική», Α. Στρέκλας, 2005
Δείτε επίσης
[Επεξεργασία | επεξεργασία κώδικα]Παραπομπές
[Επεξεργασία | επεξεργασία κώδικα]- ↑ W. Heisenberg, "Ueber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik"
- ↑ W. Heisenberg "The actual content of quantum theoretical kinematics and mechanics"
- ↑ Σ. Τραχανά Κβαντική Μηχανική Ι, εκδ. 1999
Εξωτερικοί σύνδεσμοι
[Επεξεργασία | επεξεργασία κώδικα]Αυτό το λήμμα σχετικά με τη Φυσική χρειάζεται επέκταση. Μπορείτε να βοηθήσετε την Βικιπαίδεια επεκτείνοντάς το. |