2-χλωροβουτάνιο

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Μετάβαση σε: πλοήγηση, αναζήτηση
2-χλωροβουτάνιο
2-Chlorobutane.svg
Γενικά
Όνομα IUPAC 2-χλωροβουτάνιο
Άλλες ονομασίες 2-Βουτυλοχλωρίδιο
Δευτεροταγές βουτυλοχλωρίδιο
Χημικά αναγνωριστικά
Χημικός τύπος C4H9Cl
Μοριακή μάζα 92,57 amu
Σύντομος
συντακτικός τύπος
CH3CH2CHClCH3
Συντομογραφίες sBuCl
Αριθμός CAS 78-86-4
22157-31-9 (R)
22156-91-8 (S)
SMILES CCC(Cl)C
Δομή
Ισομέρεια
Ισομερή θέσης 3
1-χλωροβουτάνιο
μεθυλο-1-χλωροπροπάνιο
μεθυλο-2-χλωροπροπάνιο
Οπτικά ισομερή 2
Φυσικές ιδιότητες
Σημείο τήξης -140 °C
Σημείο βρασμού 70 °C
Πυκνότητα 873 kg/m3
Εμφάνιση Υγρό
Χημικές ιδιότητες
Επικινδυνότητα
Hazard F.svg
Φράσεις κινδύνου R11
Φράσεις ασφαλείας S7/9, S16, S29
Εκτός αν σημειώνεται διαφορετικά, τα δεδομένα αφορούν υλικά υπό κανονικές συνθήκες (25°C, 100 kPa).

To 2-χλωροβουτάνιο ή 2-βουτυλοχλωρίδιο ή δευτεροταγές βουτυλοχλωρίδιο, σε δύο (2) οπτικά ισομερή[1], είναι ένα υγρό (στις συνηθισμένες συνθήκες, T = 25 °C, P = 1 atm) . Με βάση το χημικό τύπο του, C4H9Cl, έχει τα ακόλουθα τρία (3) ισομερές θέσης:

  1. 1-χλωροβουτάνιο.
  2. Μεθυλο-1-χλωροπροπάνιο.
  3. Μεθυλο-2-χλωροπροπάνιο.

Πίνακας περιεχομένων

Ονοματολογία[Επεξεργασία | επεξεργασία κώδικα]

Η ονομασία «χλωροβουτάνιο» προέρχεται από την ονοματολογία κατά IUPAC. Συγκεκριμένα, το πρόθεμα «βουτ-» δηλώνει την παρουσία τεσσάρων (4) ατόμων άνθρακα ανά μόριο της ένωσης, το ενδιάμεσο «-αν-» δείχνει την παρουσία μόνο απλών δεσμών μεταξύ ατόμων άνθρακα στο μόριο και η κατάληξη «-ιο» φανερώνει ότι δεν περιέχει χαρακτηριστικές ομάδες που έχουν χαρακτηριστικές καταλήξεις. Το αρχικό πρόθεμα «χλωρο-» δηλώνει την παρουσία ενός (1) ατόμου χλωρίου ανά μόριο της ένωσης. Τέλος, ο αρχικός αριθμός θέσης «2-», δηλώνει τον αριθμό θέσης του ατόμου του άνθρακα με το οποίο ενώνεται το άτομο του χλωρίου, για να διαχωριστεί η ένωση από την ισομερή της 1-χλωροβουτάνιο.

Μοριακή δομή[Επεξεργασία | επεξεργασία κώδικα]

Δεσμοί[2]
Δεσμός τύπος δεσμού ηλεκτρονική δομή Μήκος δεσμού Ιονισμός
C-H σ 2sp3-1s 109 pm 3% C- H+
C-C σ 2sp3-2sp3 154 pm
C-Cl σ 2sp3-3sp3 176 pm 9% C+ Cl-
Κατανομή φορτίων
σε ουδέτερο μόριο
H +0,03
C#1 +0,06
C#3 -0,06
C#1,#4 -0,09
Cl -0,09

Παραγωγή[Επεξεργασία | επεξεργασία κώδικα]

Με φωτοχημική χλωρίωση[Επεξεργασία | επεξεργασία κώδικα]

Με φωτοχημική χλωρίωση βουτανίου παράγεται μίγμα 1-φθοροβουτανίου και 2-χλωροβουτανίου[3]:

\mathrm{CH_3CH_2CH_2CH_3 + Cl_2 \xrightarrow[\triangle]{UV} 0,28CH_3CH_2CH_2CH_2Cl + 0,72CH_3CH_2CHClCH_3 + HCl}

  • Ακολουθεί το συνηθισμένο μηχανισμό φωτοχημικής αλογόνωσης αλκανίων. Παράγονται και πολυχλωροπαράγωγα. Η συγκέντρωση των τελευταίων περιορίζεται με χρήση περίσσειας βουτανίου.
  • Η αναφερόμενη στοιχειομετρική αναλογία παραγωγής χλωροβουτανίων δεν συνυπολογίζει τα συμπαραγόμενα πολυχλωροπαράγωγα.
  • Η μέθοδος δεν είναι χρήσιμη αν επιθυμείται το ένα μόνο ισομερές, αφού είναι σχετικά δύσκολος διαχωρισμός.

Με υποκατάσταση υδροξυλίου από χλώριο[Επεξεργασία | επεξεργασία κώδικα]

1. Με επίδραση υδροχλωρίου (HCl) σε 2-βουτανόλη (CH3CH2CH(OH)CH3)[4]:

\mathrm{CH_3CH_2CH(OH)CH_3 + HCl \xrightarrow{ZnCl_2} CH_3CH_2CHClCH_3 + H_2O}

2. Η υποκατάσταση του OH από Cl στην 2-βουτανόλη μπορεί να γίνει και με χλωριωτικά μέσα[5]:

1. Με πενταχλωριούχο φωσφόρο (PCl5):


\mathrm{CH_3CH_2CH(OH)CH_3 + PCl_5 \xrightarrow{} CH_3CH_2CHClCH_3 + POCl_3 + HCl}

2. Με τριχλωριούχο φωσφόρο (PCl3):


\mathrm{3CH_3CH_2CH(OH)CH_3 + PCl_3 \xrightarrow{} 3CH_3CH_2CHClCH_3 + H_3PO_3}

3. Με θειονυλοχλωρίδιο (SOCl2):


\mathrm{CH_3CH_2CH(OH)CH_3 + SOCl_2 \xrightarrow{} CH_3CH_2CHClCH_3 + SO_2 + HCl}

Με προσθήκη υδροχλωρίου σε 1-βουτένιο ή σε 2-βουτένιο[Επεξεργασία | επεξεργασία κώδικα]

Με προσθήκη υδροχλωρίου σε 1-βουτένιο ή σε 2-βουτένιο παράγεται 2-χλωροβουτάνιο[6]::

\mathrm{
CH_3CH_2CH=CH_2 + HCl \xrightarrow{} CH_3CH_2CHClCH_3
}
ή
\mathrm{
CH_3CH=CHCH_3 + HCl \xrightarrow{} CH_3CH_2CHClCH_3
}

Με προσθήκη χλωρομεθανίου σε προπένιο[Επεξεργασία | επεξεργασία κώδικα]

Με προσθήκη φθρορομεθανίου σε προπένιο παράγεται 2-χλωροβουτάνιο[7]::

\mathrm{
CH_3CH=CH_2 + CH_3Cl \xrightarrow{} CH_3CH_2CHClCH_3
}

Με προσθήκη υδροχλωρίου σε μεθυλοκυκλοπροπάνιο[Επεξεργασία | επεξεργασία κώδικα]

Με προσθήκη υδροχλωρίου (ΗCl) σε μεθυλοκυκλοπροπάνιο παράγεται 2-χλωροβουτάνιο[8]:

Μεθυλοκυκλοπροπάνιο  \mathrm{+ HCl \xrightarrow{} CH_3CH_2CHClCH_3}

Χημικές ιδιότητες και παράγωγα[Επεξεργασία | επεξεργασία κώδικα]

Αντιδράσεις υποκατάστασης[Επεξεργασία | επεξεργασία κώδικα]

  • Οι αντιδράσεις είναι πολύ πιο αργές σε σύγκριση με τα αντίστοιχα αλκυλαλογονίδια των άλλων αλογόνων, γιατί ο μηχανισμός που επικρατεί σ' αυτές τις αντιδράσεις υποκαταστάσεως είναι ο SN2.

Υποκατάσταση από υδροξύλιο[Επεξεργασία | επεξεργασία κώδικα]

Κατά την υδρόλυσή του με εναιώρημα υδροξειδίου του αργύρου (AgOH) σχηματίζεται 2-βουτανόλη (CH3CH2CH(OH)CH3)[9]:

\mathrm{CH_3CH_2CHClCH_3 + AgOH \xrightarrow{} CH_3CH_2CH(OH)CH_3 + AgCl}

Υποκατάσταση από αλκοξύλιο[Επεξεργασία | επεξεργασία κώδικα]

Με αλκοολικά άλατα (RONa) σχηματίζει 2-αλκοξυβουτάνιο (CH3CH2CH(OR)CH3)[9]:

\mathrm{CH_3CH_2CHClCH_3 + RONa \xrightarrow{} CH_3CH_2CH(OR)CH_3 + NaCl}

Υποκατάσταση από αλκινύλιο[Επεξεργασία | επεξεργασία κώδικα]

Με αλκινικά άλατα (RC≡CNa) σχηματίζει αλκίνιο (RC≡CCH(CH3)CH2CH3). Π.χ.[9]:

\mathrm{CH_3CH_2CHClCH_3 + RC \equiv CNa \xrightarrow{} RC \equiv CCH(CH_3)CH_2CH_3 + NaCl}

Υποκατάσταση από ακύλιο[Επεξεργασία | επεξεργασία κώδικα]

Με καρβονικά άλατα (RCOONa) σχηματίζει καρβονικό δευτεροταγή βουτυλεστέρα (RCOOCH(CH3)CH2CH3)[9]:

\mathrm{CH_3CH_2CHClCH_3 + RCOONa \xrightarrow{} RCOOCH(CH_3)CH_2CH_3 + NaCl}

Υποκατάσταση από κυάνιο[Επεξεργασία | επεξεργασία κώδικα]

Με κυανιούχο νάτριο (NaCN) σχηματίζει 2-μεθυλοβουτανονιτρίλιο (CH3CH2CH(CN)CH3)[9]:

\mathrm{CH_3CH_2CHClCH_3 +NaCN \xrightarrow{} CH_3CH_2CH(CN)CH_3 + NaCl}

Υποκατάσταση από αλκύλιο[Επεξεργασία | επεξεργασία κώδικα]

Με αλκυλολίθιο (RLi) σχηματίζει αλκάνιο[9]:

\mathrm{CH_3CH_2CHClCH_3 + RLi \xrightarrow{} RCH(CH_3)CH_2CH_3 + LiCl}

Υποκατάσταση από σουλφυδρίλιο[Επεξεργασία | επεξεργασία κώδικα]

Με όξινο θειούχο νάτριο (NaSH) σχηματίζει 2-βουτανοθειόλη (CH3CH2CH(SH)CH3)[9]:

\mathrm{CH_3CH_2CHClCH_3 + NaSH \xrightarrow{} CH_3CH_2CH(SH)CH_3 + NaCl}

Υποκατάσταση από σουλφαλκύλιο[Επεξεργασία | επεξεργασία κώδικα]

Με θειολικό νάτριο (RSNa) σχηματίζει 2-αλκυλοθειοβουτάνιο (RSCH(CH3)CH2CH3)[9]:

\mathrm{CH_3CH_2CHClCH_3 + RSNa \xrightarrow{} CH_3CH_2CH(SR)CH_3 + NaCl}

Υποκατάσταση από ιώδιο[Επεξεργασία | επεξεργασία κώδικα]

Με ιωδιούχο νάτριο (NaI) σχηματίζει 2-ιωδοβουτάνιο (CH3CH2CHICH3)[9]:

\mathrm{CH_3CH_2CHClCH_3 + NaI \xrightarrow{} CH_3CH_2CHICH_3 + NaCl}

Υποκατάσταση από φθόριο[Επεξεργασία | επεξεργασία κώδικα]

Με επίδραση φθοριούχου υφυδραργύρου (Hg2F2) σε 2-χλωροβουτάνιο (CH3CH2</subCHClCH3>) παράγεται 2-φθοροβουτάνιο[10]:

\mathrm{2CH_3CH_2CHClCH_3 + Hg_2F_2 \xrightarrow{} 2CH_3CH_2CHFCH_3 + Hg_2Cl_2 \downarrow}

Υποκατάσταση από αμινομάδα[Επεξεργασία | επεξεργασία κώδικα]

Με αμμωνία (NH3) σχηματίζει 2-βουταναμίνη (CH3CH2CH(NH2)CH3)[9]:

\mathrm{CH_3CH_2CHClCH_3 + NH_3 \xrightarrow{} CH_3CH_2CH(NH_2)CH_3 + HCl}

Υποκατάσταση από αλκυλαμινομάδα[Επεξεργασία | επεξεργασία κώδικα]

Με πρωυτοταγείς αμίνες (RNH2) σχηματίζει N-αλκυλο-2-βουταναμίνη (CH3CH2CH(NHR)CH3)[9]:

\mathrm{CH_3CH_2CHClCH_3 + RNH_2 \xrightarrow{} CH_3CH_2CH(NHR)CH_3 + HCl}

Υποκατάσταση από διαλκυλαμινομάδα[Επεξεργασία | επεξεργασία κώδικα]

Με δευτεροταγείς αμίνες (R'NHR) σχηματίζει N,N-διαλκυλο-2-βουταναμίνη [(CH3CH2CH(NRR΄)CH3)][9]:

\mathrm{CH_3CH_2CHClCH_3 + R\acute{}\;NHR \xrightarrow{} CH_3CH_2CH(NRR\acute{})CH_3 + HCl}

Υποκατάσταση από τριαλκυλαμινομάδα[Επεξεργασία | επεξεργασία κώδικα]

Με τριτοταγείς αμίνες [R'N(R)R΄΄] σχηματίζει χλωριούχο N,N,N-τριαλκυλο(1-μεθυλοπροπυλ)αμμώνιο {[(CH3CH2CH(NRR΄R΄΄)CH3]Cl}[11]:

\mathrm{CH_3CH_2CHClCH_3 + R\acute{}\;N(R)R\acute{}\;\acute{}\; \xrightarrow{} [CH_3CH_2CH(N(R)(R\acute{})R\acute{}\;\acute{})CH_3]Cl}

Υποκατάσταση από φωσφύλιο[Επεξεργασία | επεξεργασία κώδικα]

Με φωσφίνη σχηματίζει 2-βουτανοφωσφαμίνη[12]:

\mathrm{CH_3CH_2CHClCH_3 + PH_3 \xrightarrow{} CH_3CH_2CH(PH_2)CH_3 + HCl}

Υποκατάσταση από νιτροομάδα[Επεξεργασία | επεξεργασία κώδικα]

Με νιτρώδη άργυρο (AgNO2) σχηματίζει 2-νιτροβουτάνιο (CH3CH2CH(NO2)CH3)[13]:

\mathrm{CH_3CH_2CHClCH_3 + AgNO_2 \xrightarrow{} CH_3CH_2CH(NO_2)CH_3 + AgCl}

Υποκατάσταση από φαινύλιο[Επεξεργασία | επεξεργασία κώδικα]

Με επίδραση τύπου Clriedel-Crafts σε βενζολίου παράγεται 2-φαινυλοβενζόλιο:

\mathrm{PhH + CH_3CH_2CHClCH_3 \xrightarrow{AlCl_3} CH_3CH_2CH(Ph)CH_3 + HCl}

Παραγωγή οργανομεταλλικών ενώσεων[Επεξεργασία | επεξεργασία κώδικα]

1. Με λίθιο (Li σχηματίζει δευτεροταγές βουτυλολίθιο[14]:


\mathrm{CH_3CH_2CHClCH_3 + 2Li \xrightarrow[-10^oC]{|Et_2O|} CH_3CH_2CHLiCH_3 + LiCl}

2. Με μαγνήσιο (Mg) σχηματίζει δευτεροταγές βουτυλομαγνησιοχλωρίδιο [15]:


\mathrm{CH_3CH_2CHClCH_3 + Mg \xrightarrow{|Et_2O|} CH_3CH_2CH(MgCl)CH_3}

Αναγωγή[Επεξεργασία | επεξεργασία κώδικα]

1. Με λιθιοαργιλλιοϋδρίδιο (LiAlH4) παράγεται βουτάνιο.[16]:


\mathrm{4CH_3CH_2CHClCH_3 + LiAlH_4 \xrightarrow{} 4CH_3CH_2CH_2CH_3 + LiCl + AlCl_3}

2. Με «υδρογόνο εν τω γενάσθαι», δηλαδή μέταλλο + οξύ παράγεται βουτάνιο.[17]:


\mathrm{CH_3CH_2CHClCH_3 + Zn + HCl \xrightarrow{} CH_3CH_2CH_2CH_3 + ZnCl_2}

3. Με σιλάνιο, παρουσία τριχλωριούχου βορίου, παράγεται βουτάνιο[18]:


\mathrm{CH_3CH_2CHClCH_3 + SiH_4 \xrightarrow{BCl_3} CH_3CH_2CH_2CH_3 + SiH_3Cl}

4. Αναγωγή από ένα αλκυλοκασσιτεράνιο. Π.χ.[19]:

\mathrm{CH_3CH_2CHClCH_3 + RSnH_3 \xrightarrow{} CH_3CH_2CH_2CH_3 + RSnH_2Cl}

Αντιδράσεις προσθήκης[Επεξεργασία | επεξεργασία κώδικα]

1. Σε αλκένια. Π.χ. με αιθένιο (CH2=CH2) παράγει 3-μεθυλο-1-χλωροπεντάνιο [20]:


\mathrm{CH_3CH_2CHClCH_3 + CH_2=CH_2 \xrightarrow{} CH_3CH_2CH(CH_3)CH_2CH_2Cl}

2. Σε αλκίνια. Π.χ. με αιθίνιο (HC≡CH) παράγει 3-μεθυλο-1-χλωρο-1-πεντένιο [21]:


\mathrm{CH_3CH_2CHClCH_3 + HC \equiv CH \xrightarrow{} CH_3CH_2CH(CH_3)CH=CHCl}

3. Η αντίδραση του 1-χλωροβουτανίου με συζυγή αλκαδιένια αντιστοιχεί κυρίως σε 1,4-προσθήκη, αν και είναι επίσης δυνατές η 1,2-προσθήκη και η 3,4-προσθήκη, με τη χρήση κατάλληλων συνθηκών. Π.χ[22]:


\mathrm{RCH=CHCH=CH_2 + CH_3CH_2CHClCH_3 \xrightarrow{} RCH_2ClCH=CHCH_2CH(CH_3)CH_2CH_3} 
(1,4-προσθήκη)

\mathrm{RCH=CHCH=CH_2 + CH_3CH_2CHClCH_3 \xrightarrow{} RCH=CHCHClCH_2CH(CH_3)CH_2CH_3} 
(1,2-προσθήκη)

\mathrm{RCH=CHCH=CH_2 + CH_3CH_2CHClCH_3 \xrightarrow{} \frac{1}{2} RCHClCH(CH(CH_3)CH_2CH_3)CH=CH_2 + \frac{1}{2} RCH(CH(CH_3)CH_2CH_3)CHClCH=CH_2} 
(3,4-προσθήκη)

4. Σε κυκλοαλκάνια που έχουν τριμελή ή τετραμελή δακτύλιο. Π.χ. με κυκλοπροπάνιο παράγει 4-μεθυλο-1-χλωρεξάνιο[23]:

κυκλοπροπάνιο  \mathrm{+ CH_3CH_2CHClCH_3 \xrightarrow{} CH_3CH_2CH(CH_3)CH_2CH_2CH_2Cl}

5. Σε ετεροκυκλικές ενώσεις που έχουν τριμελή ή τετραμελή δακτύλιο. Π.χ. με εποξυαιθάνιο παράγει δευτεροταγές βουτοξυ-2-χλωραιθάνιο[24]:

Ethylene oxide.svg  \mathrm{+ CH_3CH_2CHClCH_3 \xrightarrow{} ClCH_2CH_2OCH(CH_3)CH_2CH_3}

Αντίδραση απόσπασης[Επεξεργασία | επεξεργασία κώδικα]

Με απόσπαση υδροχλωρίου (HCl) από 2-χλωροβουτάνιο παράγεται μίγμα από 1-βουτένιο και 2-βουτένιο[25]:

\mathrm{CH_3CH_2CHClCH_3 + NaOH \xrightarrow[\triangle]{ROH} \frac{3}{5} CH_3CH_2CH=CH_2 + \frac{2}{5} CH_3CH=CHCH_3 + NaCl + H_2O }

Παρεμβολή καρβενίων[Επεξεργασία | επεξεργασία κώδικα]

  • Τα καρβένια (π.χ. [:CH2]) μπορούν παρεμβληθούν στους δεσμούς C-H. Π.χ. έχουμε[26]:

\mathrm{CH_3CH_2CHClCH_3 + CH_3Br + KOH \xrightarrow{} \frac{1}{3} CH_3CH_2CHClCH_2CH_3 + \frac{1}{3} CH_3CH_2CH_2CHClCH_3 + \frac{2}{9} (CH_3)_2CHCHClCH_3 + \frac{1}{9} CH_3CH_2CCl(CH_3)_2 + KBr + H_2O}

  • Η αντίδραση είναι ελάχιστα εκλεκτική και αυτό σημαίνει ότι κατά προσέγγιση έχουμε;
1. Παρεμβολή στους τρεις (3) δεσμούς C#1H2-H. Παράγεται 3-χλωροπεντάνιο.
2. Παρεμβολή στους τρεις (3) δεσμούς C#4H2-H. Παράγεται 2-χλωροπεντάνιο.
3. Παρεμβολή στους δυο (2) δεσμούς CH-H: Παράγεται 3-μεθυλο-2-χλωροβουτάνιο.
4. Παρεμβολή στον ένα (1) δεσμό C-H: Παράγεται 2-μεθυλο-2-χλωροβουτάνιο.

Προκύπτει επομένως μίγμα 3-χλωροπεντάνιου ~33%, 3-χλωροπεντάνιου ~33%, 3-μεθυλο-2-χλωροβουτάνιου ~22% και 2-μεθυλο-2-χλωροβουτάνιου ~11%.

Σημειώσεις και αναφορές[Επεξεργασία | επεξεργασία κώδικα]

  1. Το #2 άτομο άνθρακα είναι οπτικά ενεργό κέντρο, αφού είναι συνδεμένο με τέσσερεις (4) διαφορετικές «ρίζες»: H, Cl, CH3, CH2CH3.
  2. Τα δεδομένα προέρχονται εν μέρει από το «Table of periodic properties of thw Ellements», Sagrent-Welch Scientidic Company και Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, Σελ. 34.
  3. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 155, §6.7.2, R = CH3CH2CH2CH2, CH3CH2CHCH3, X = Cl.
  4. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 185, §7.2.1, R = CH3CH2CHCH3, X = Cl.
  5. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 185, §7.2.2, R = CH3CH2CHCH3.
  6. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, για Ε = H και Nu = Cl.
  7. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, για Ε = CH3 και Nu = Cl.
  8. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, εφαρμογή για κυκλοαλκάνια και για Ε = H και Nu = Cl σε συνδυασμό με Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985, §1.2., σελ. 22-25
  9. 9,00 9,01 9,02 9,03 9,04 9,05 9,06 9,07 9,08 9,09 9,10 9,11 Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 186, §7.3.1.
  10. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 185, §7.2.8.
  11. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 243, §10.2.Α, R = CH3CH2CHCH3, X = Cl.
  12. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 267, §11.3.Α1, R = CH3CH2CHCH3, X = Cl.
  13. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 244, §10.3.Α, R = CH3CH2CHCH3, X = Cl.
  14. Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991, §5.1. σελ.82
  15. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 187, §7.3.5, R = CH3CH2CHCH3, X = Cl.
  16. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 187, §7.3.3α, R = CH3CH2CHCH3, X = Cl.
  17. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 187, §7.3.3β, R = CH3CH2CHCH3, X = Cl.
  18. Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991, σελ. 291-293, §19.1.
  19. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, Σελ. 42, §4.3.
  20. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, για Ε = CH3CH2CHCH3 και Nu = Cl.
  21. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, εφαρμογή για αλκίνια και για Ε = CH3CH2CHCH3 και Nu = Cl με βάση και την §8.1, σελ. 114-116.
  22. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, εφαρμογή για αλκαδιένια και για Ε = CH3CH2CHCH3 και Nu = Cl με βάση και την §8.2, σελ. 116-117.
  23. SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999, §6.3., σελ. 79, εφαρμογή για κυκλοαλκάνια και για Ε = CH3CH2CHCH3 και Nu = Cl σε συνδυασμό με Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985, §1.2., σελ. 22-25
  24. Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985, §2.1., σελ. 16-17, εφαρμογή γενικής αντίδρασης για Nu = Cl.
  25. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ.153, §6.3.1α.
  26. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 155, §6.7.3.

Πηγές[Επεξεργασία | επεξεργασία κώδικα]

  • Γ. Βάρβογλη, Ν. Αλεξάνδρου, Οργανική Χημεία, Αθήνα 1972
  • Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991
  • SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999
  • Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982
  • Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985
Στο λήμμα αυτό έχει ενσωματωθεί κείμενο από το λήμμα 2-Chlorobutane της Αγγλικής Βικιπαίδειας, η οποία διανέμεται υπό την GNU FDL και την CC-BY-SA 3.0. (ιστορικό/συντάκτες).