Ιωδοβενζόλιο

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Ιωδοβενζόλιο
Γενικά
Όνομα IUPAC Ιωδοβενζένιο
Άλλες ονομασίες Ιωδοβενζόλιο
Φαινυλιωδίδιο
Χημικά αναγνωριστικά
Χημικός τύπος C6H5I
Μοριακή μάζα 204,01 amu
Σύντομος
συντακτικός τύπος
C6H5I
Συντομογραφίες PhI
Αριθμός CAS 591-50-4
SMILES Ic1ccccc1
InChI 1S/C6H5I/c7-6-4-2-1-3-5-6/h1-5H
PubChem CID 11575
ChemSpider ID 11087
Δομή
Ισομέρεια
Ισομερή θέσης >108
Φυσικές ιδιότητες
Σημείο τήξης -29 °C
Σημείο βρασμού 188 °C
Πυκνότητα 1.831 kg/m3
Ιξώδες 1,124 cP (20 °C)
Εμφάνιση Άχρωμο προς κιτρινωπό υγρό
Χημικές ιδιότητες
Ελάχιστη θερμοκρασία
ανάφλεξης
51 °C
Επικινδυνότητα
Εκτός αν σημειώνεται διαφορετικά, τα δεδομένα αφορούν υλικά υπό κανονικές συνθήκες περιβάλλοντος (25°C, 100 kPa).


To ιωδοβενζόλιο ή ιωδοβενζένιο ή φαινυλιωδίδιο αρωματική χημική ένωση με χημικό τύπο C6H5I, που παριστάνεται συντομογραφικά ως PhBr. Είναι ένα παράγωγο του βενζολίου.

Δομή[Επεξεργασία | επεξεργασία κώδικα]

Δεσμοί[1]
Δεσμός τύπος δεσμού ηλεκτρονική δομή Μήκος δεσμού Ιονισμός
C-H σ 2sp2-1s 106 pm 3% C- H+
C-C σ 2sp2-2sp2 147 pm
C-I σ 2sp3-5sp3 210 pm 5‰ C+ I-
C#1...C#6' π[2] 2p-2p 147 pm
Κατανομή φορτίων
σε ουδέτερο μόριο
C#2-#6 -0,03
I -0,005
C#1 +0,005
H +0,03

Παραγωγή[Επεξεργασία | επεξεργασία κώδικα]

Με ιωδίωση βενζολίου[Επεξεργασία | επεξεργασία κώδικα]

Με ιωδίωση βενζολίου παράγεται ιωδοβενζόλιο[3]:

Με υποκατάσταση υδροξυλίου από ιώδιο[Επεξεργασία | επεξεργασία κώδικα]

Με επίδραση υδροϊωδίου (HI) σε φαινόλη (PhOH) πσράγεται ιωδοβενζόλιο[5]:

  • Συνήθως το υδροϊώδιο παρασκευάζεται επιτόπου («in citu») με την αντίδραση:

Με υποκατάσταση άλλου αλογόνου από ιώδιο[Επεξεργασία | επεξεργασία κώδικα]

Με επίδραση ιωδιούχου καλίου (KI) σε αλοβενζόλιο PhX, όππυ X εδώ F, Cl, Br), ιωδοβενζόλιο[6]:

Με υποκατάσταση αμινομάδας από ιώδιο[Επεξεργασία | επεξεργασία κώδικα]

Με έμεσε υποκατάσταση της αμινομάδας ανιλίνης από ιώδιο, μέσω της αντίδρασης Sandmeyer και σχηματισμού διαζωβενζολιακού άλατος παράγεται ιωδοβενζόλιο[7]:


Χημικές ιδιότητες και παράγωγα[Επεξεργασία | επεξεργασία κώδικα]

Αντιδράσεις πυρηνόφιλης υποκατάστασης[Επεξεργασία | επεξεργασία κώδικα]

  • Επειδή ο δεσμός C-I είναι ασθενέστερος από τους δεσμούς C-Br και C-Cl, το ιωδοβενζόλιο είναι πιο δρασυικό από το βρωμοβενζόλιο και το χλωροβενζόλιο.

Υποκατάσταση από υδροξύλιο[Επεξεργασία | επεξεργασία κώδικα]

Υδρόλυση με αραιό διάλυμα υδροξειδίου του νατρίου (NaOH) παράγεται φαινόλη (PhOH)[8]:

Υποκατάσταση από αλκοξύλιο[Επεξεργασία | επεξεργασία κώδικα]

Με αλκοολικά άλατα (RONa) παράγεται αλκυλοφαινυλαιθέρας (PhOR)[8]:

Υποκατάσταση από αλκινύλιο[Επεξεργασία | επεξεργασία κώδικα]

Με αλκινικά άλατα (RC≡CNa) παράγεται φαινυλαλκίνιο (RC≡CPh). Π.χ.[8]:

Υποκατάσταση από ακύλιο[Επεξεργασία | επεξεργασία κώδικα]

Με καρβονικά άλατα (RCOONa) παράγεται καρβονικό φαινυλεστέρας (RCOOPh)[8]:

Υποκατάσταση από κυάνιο[Επεξεργασία | επεξεργασία κώδικα]

Με κυανιούχο νάτριο (NaCN) παράγεται βενζονιτρίλιο (PhCN)[8]:

Υποκατάσταση από αλκύλιο[Επεξεργασία | επεξεργασία κώδικα]

Με αλκυλολίθιο (RLi) παράγεται αλκυλοβενζόλιο[8]:

Υποκατάσταση από σουλφυδρίλιο[Επεξεργασία | επεξεργασία κώδικα]

Με όξινο θειούχο νάτριο (NaSH) παράγεται θειοφαινόλη (PhSH)[8]:

Υποκατάσταση από σουλφαλκύλιο[Επεξεργασία | επεξεργασία κώδικα]

Με θειολικό νάτριο (RSNa) παράγεται αλκυλοφαινυλοθειαιθέρας (PhSR)[8]:

Υποκατάσταση ιωδίου από φθόριο[Επεξεργασία | επεξεργασία κώδικα]

Με επίδραση φθοριούχου υφυδραργύρου (Hg2F2) σε ιωδοβενζόλιο (PhI) πσράγεται φθοροβενζόλιο[9]:

Υποκατάσταση από αμινομάδα[Επεξεργασία | επεξεργασία κώδικα]

Με αμμωνία (NH3) παράγεται ανιλίνη (PhNH2)[8]:

Υποκατάσταση από αλκυλαμινομάδα[Επεξεργασία | επεξεργασία κώδικα]

Με πρωυτοταγείς αμίνες (RNH2) παράγεται N-αλκυλανιλίνη (PhNHR)[8]:

Υποκατάσταση από διαλκυλαμινομάδα[Επεξεργασία | επεξεργασία κώδικα]

Με δευτεροταγείς αμίνες (R΄NHR) παράγεται N,N-διαλκυλομεθυλαμίνη [PhN(R)R΄][8]:

Υποκατάσταση από φωσφύλιο[Επεξεργασία | επεξεργασία κώδικα]

Με φωσφίνη σχηματίζει φαινυλοφωσφίνη[10]:

Υποκατάσταση από νιτροομάδα[Επεξεργασία | επεξεργασία κώδικα]

Με νιτρώδη άργυρο (AgNO2) παράγεται νιτροβενζόλιο (PhNO2)[11]:

Παραγωγή οργανομεταλλικών ενώσεων[Επεξεργασία | επεξεργασία κώδικα]

1. Με λίθιο (Li). Παράγεται φαινυλολίθιο:

2. Με μαγνήσιο (Mg) (αντιδραστήριο Grignard)[12]:

Αναγωγή[Επεξεργασία | επεξεργασία κώδικα]

1. Με λιθιοαργιλιοϋδρίδιο (LiAlH4) παράγεται βενζόλιο[13]:

2. Με «υδρογόνο εν τω γενάσθαι», δηλαδή μέταλλο + οξύ παράγεται βενζόλιο[14]:

3. Με υδροϊώδιο (HI):

4. Με σιλάνιο, παρουσία τριιωδιούχου βορίου παράγεται βενζόλιο[15]:

Αντιδράσεις προσθήκης[Επεξεργασία | επεξεργασία κώδικα]

1. Σε αλκένια. Π.χ. με αιθένιο (CH2=CH2) παράγει 2-φαινυλο-1-ιωδαιθάνιο (PhCH2CH2I):

2. Σε αλκίνια. Π.χ. με αιθίνιο (HC≡CH) παράγει 2-φαινυλο-1-ιωδαιθένιο (PhCH=CHI):

3. Σε κυκλοαλκάνια που έχουν τριμελή ή τετραμελή δακτύλιο. Π.χ. με κυκλοπροπάνιο παράγει 3-φαινυλο-1-ιωδοπροπάνιο:

κυκλοπροπάνιο

4. Σε αλκαδιένια. Π.χ. με βουταδιένιο-1,3 παράγει 4-φαινυλο-1-ιωδο-2-βουτένιο.

5. Σε ετεροκυκλικές ενώσεις που έχουν τριμελή ή τετραμελή δακτύλιο. Π.χ. με εποξυαιθάνιο παράγει φαινοξυ-2-ιωδαιθάνιο[16]:

Αντιδράσεις ηλεκτρονιόφιλης υποκατάστασης[Επεξεργασία | επεξεργασία κώδικα]

  • Η παρουσία του ιωδίου απενεργοποιεί μερικώς τον αρωματικό χαρακτήρα, κάνοντας τις παρακάτω αντιδράσεις πιο αργές σε σύγκριση με τις αντίστοιχες του βενζολίου. Παράγονται, ωστόσο ορθο- και παρα- παράγωγα.

Νίτρωση[Επεξεργασία | επεξεργασία κώδικα]

Με νίτρωση παράγει ορθοιωδονιτροβενζόλιο και παραιωδονιτροβενζόλιο[3]:

Σουλφούρωση[Επεξεργασία | επεξεργασία κώδικα]

Με σουλφούρωση παράγει ορθοιωδοβενζοσουλφονικό οξύ και παραιωδοβενζοσουλφονικό οξύ[3]:

Αλογόνωση[Επεξεργασία | επεξεργασία κώδικα]

Με αλογόνωση παράγει ορθοαλοιωδοβενζόλιο και παρααλοιωδοβενζόλιο[3]:

  • όπου Χ I ή I. Τα άλλα φαινυλαλονονίδια προκύπτουν σε δεύτερη φάση με υποκατάσταση αυτών με χρήση KI ή Hg2F2, αντίστοιχα.

Αλκυλίωση[Επεξεργασία | επεξεργασία κώδικα]

Με αλκυλίωση κατά Friedel-Crafts παράγει ορθοαλκυλοιωδοβενζόλιο και παρααλκυλοιωδοβενζόλιο[3]:

Ακυλίωση[Επεξεργασία | επεξεργασία κώδικα]

Με ακυλίωση κατά Friedel-Crafts παράγει ορθοακυλοιωδοβενζόλιο και παραακυλοιωδοβενζόλιο[3]:

Υδροξυλίωση[Επεξεργασία | επεξεργασία κώδικα]

Με υδροξυλίωση κατά Friedel-Crafts παράγει ορθοιωδοφαινόλη και παραιωδοφαινολη[3]:

Αμίνωση[Επεξεργασία | επεξεργασία κώδικα]

Με αμίνωση κατά Friedel-Crafts παράγει ορθοιωδοανιλίνη και παραιωδοανιλίνη[3]:

Καρβοξυλίωση[Επεξεργασία | επεξεργασία κώδικα]

Με καρβοξυλίωση κατά Friedel-Crafts προς ορθοιωδοβενζοϊκό οξύ και παραιωδοβενζοϊκό οξύ[3]:

Αναγωγή[Επεξεργασία | επεξεργασία κώδικα]

Με υδρογόνωση παράγει ιωδοκυκλοεξάνιο[17]:

Οζονόλυση[Επεξεργασία | επεξεργασία κώδικα]

Με Οζονόλυση παράγει αιθανοδιάλη και φορμυλοαιθανοϋλοιωδίδιο[18]:

Αλομεθυλίωση[Επεξεργασία | επεξεργασία κώδικα]

Με αλομεθυλίωση κατά Blanc παράγει ορθοαλομεθυλοιωδοβενζόλιο και παρααλομεθυλοιωδοβενζόλιο[19]:

Επίδραση καρβενίων[Επεξεργασία | επεξεργασία κώδικα]

Με μεθυλένιο προς ορθοιωδοτολουόλιο, μεταιωδοτολουόλιο, παραιωδοτολουόλιο, 1-ιωδοκυκλοεπτατρένιο, 2-ιωδοκυκλοεπτατρένιο και 3-ιωδοκυκλοεπτατρένιο:

Εφαρμογές[Επεξεργασία | επεξεργασία κώδικα]

Το ιωδοβενζόλιο μπορεί να χρησιμοποιηθεί για την παρασκευή του ιωδομαγνησιοβενζόλιου, που αντιδρά με διοξείδιο του άνθρακα, παράγοντας βενζοϊκό οξύ:

Μπορεί ακόμη να χρησιμοποιηθεί, όπως και το βρωμοβενζόλιο, για αντιδράσεις «ζευγαρώματος», όπως η αντίδραση Σουζούκι:

Τέλος, το ιωδοβενζόλιο αντιδρά με το χλώριο σχηματίζοντας το σύμπλοκο διχλωριούχο ιωδοβενζόλιο (PhICl2), που χρησιμοπποιείται ως ένα οξειδωτικό[20]:


Παραπομπές και σημειώσεις[Επεξεργασία | επεξεργασία κώδικα]

  1. Τα δεδομένα προέρχονται εν μέρει από το «Table of periodic properties of thw Ellements», Sagrent-Welch Scientidic Company και Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, Σελ. 34.
  2. Δεσμός 6 κέντρων και 6 ηλεκτρονίων
  3. 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 360, §16.5.1.
  4. F. B. Dains and R. Q. Brewster (1941), «Iodobenzene», Org. Synth., http://www.orgsyn.org/orgsyn/orgsyn/prepContent.asp?prep=cv1p0323 ; Coll. Vol. 1: 323 
  5. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 185, §7.2.1, R = Ph, X = Ι.
  6. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 185, §7.2.3, R = Ph.
  7. H. J. Lucas, E. R. Kennedy (1939), «Iodobenzene», Org. Synth., http://www.orgsyn.org/orgsyn/orgsyn/prepContent.asp?prep=cv2p0351 ; Coll. Vol. 2: 351 
  8. 8,00 8,01 8,02 8,03 8,04 8,05 8,06 8,07 8,08 8,09 8,10 Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 186, §7.3.1.
  9. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 185, §7.2.8.
  10. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 267, §11.3.Α1, R = Ph, X = I.
  11. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 244, §10.3.Α, R = Ph, X = I.
  12. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 187, §7.3.5, R = Ph, X = I.
  13. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 187, §7.3.3α, R = Ph, X = I.
  14. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 187, §7.3.3β, R = Ph, X = I.
  15. Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991, σελ. 291-293, §19.1.
  16. Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985, §2.1., σελ. 16-17, εφαρμογή γενικής αντίδρασης για Nu = I.
  17. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 360, §16.5.2.
  18. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 360, §16.5.3.
  19. Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982, σελ. 360, §16.5.5.
  20. H. J. Lucas and E. R. Kennedy, «Iodobenzene dichloride», Org. Synth., http://www.orgsyn.org/orgsyn/orgsyn/prepContent.asp?prep=cv3p0482 ; Coll. Vol. 3: 482 

Πηγές[Επεξεργασία | επεξεργασία κώδικα]

  • Γ. Βάρβογλη, Ν. Αλεξάνδρου, Οργανική Χημεία, Αθήνα 1972
  • Α. Βάρβογλη, «Χημεία Οργανικών Ενώσεων», παρατηρητής, Θεσσαλονίκη 1991
  • SCHAUM'S OUTLINE SERIES, ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ, Μτφ. Α. Βάρβογλη, 1999
  • Ασκήσεις και προβλήματα Οργανικής Χημείας Ν. Α. Πετάση 1982
  • Ν. Αλεξάνδρου, Α. Βάρβογλη, Δ. Νικολαΐδη: Χημεία Ετεροχημικών Ενώσεων, Θεσσαλονίκη 1985