Γραμμομόριο

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια
Μετάβαση σε: πλοήγηση, αναζήτηση

Το γραμμομόριο ή mole μολ (σύμβολο: mol) είναι η μονάδα μέτρησης με την οποία προσδιορίζουμε την ποσότητα ύλης ενός σώματος στο Διεθνές Σύστημα Μονάδων (S.I.) και αποτελεί μία από τις επτά θεμελιώδεις μονάδες του.

Ορισμός[Επεξεργασία | επεξεργασία κώδικα]

Το mole είναι η ποσότητα ύλης ενός σώματος που περιέχει τόσες στοιχειώδεις οντότητες όσα είναι τα άτομα σε 0,012 χιλιόγραμμα καθαρού ισοτόπου άνθρακα-12 (12C). Στην ποσότητα αυτή του άνθρακα-12 (12C) περιέχονται 6,02214199×1023 άτομα άνθρακα. Ο αριθμός αυτός ονομάζεται αριθμός Avogadro, αποτελεί φυσική σταθερά και συμβολίζεται με ΝΑ. Το mole είναι η ποσότητα ΝΑ διακεκριμένων, ομοίων μεταξύ τους, στοιχειωδών οντοτήτων (ατόμων, μορίων, ιόντων, ηλεκτρονίων, στοιχειωδών φορτίων, φωτονίων κ.τ.λ).

Εκφράσεις που συνδέονται με το mole[Επεξεργασία | επεξεργασία κώδικα]

Στην ελληνική και ξένη βιβλιογραφία εμφανίστηκαν πολλές εκφράσεις που είχαν σαν βάση το mole. Οι παρακάτω εκφράσεις τείνουν σήμερα να εξαλειφθούν και να αντικατασταθούν από ισοδύναμες εκφράσεις που περιέχουν τον όρο mole.

1 mol ατόμων είναι η ποσότητα ενός στοιχείου που περιέχει 6,02214199×1023 άτομα του στοιχείου. Το mole ατόμων έχει μάζα σε γραμμάρια όσο η σχετική ατομική μάζα Αr (ατομικό βάρος) του στοιχείου.

1 mole μορίων είναι η ποσότητα ενός στοιχείου ή μίας μοριακής χημικής ένωσης που περιέχει 6,02214199×1023 μόρια του στοιχείου ή της χημικής ένωσης. Στην περίπτωση των ιοντικών χημικών ενώσεων το mole της χημικής ένωσης περιέχει ν×6,02214199×1023 θετικά ή αρνητικά ιόντα, όπου (ν) ο συντελεστής αναλογίας του ιόντος στη γραφή του μοριακού τύπου της ένωσης. Το mole μορίων έχει μάζα σε γραμμάρια όσο η σχετική μοριακή μάζα Μr (μοριακό βάρος) του στοιχείου ή της χημικής ένωσης.

1 mole ιόντων είναι η ποσότητα απλών ή σύνθετων ιόντων που περιέχει 6,02214199×1023 ιόντα. Το mole ιόντων έχει μάζα σε γραμμάρια όσο η σχετική ατομική μάζα Αr του στοιχείου (για τα απλά ιόντα) ή η σχετική μοριακή μάζα Μr του σύνθετου ιόντος.

1 mol στοιχειωδών φορτίων είναι ποσότητα στοιχείου, χημική ένωσης ή ιόντος ικανό να παρέχει 6,02214199×1023 στοιχειώδη θετικά η αρνητικά φορτία κατά τη διάρκεια μίας χημικής μεταβολής. Το mole στοιχειωδών φορτίων ενός στοιχείου ή μίας χημικής ένωσης έχει μάζα σε γραμμάρια όσο η σχετική ατομική ή μοριακή μάζα αντίστοιχα διαιρεμένη με τον αριθμό φορτίων που το άτομο ή το μόριο παρέχει στη συγκεκριμένη χημική μεταβολή.

Εκφράσεις σχετικές με το mole[Επεξεργασία | επεξεργασία κώδικα]

  • Γραμμομοριακή μάζα M ενός στοιχείου ή μίας χημικής ένωσης είναι η μάζα ενός mole μορίων της και μετριέται στο S.I. σε kg/mol. Η γραμμομοριακή μάζα είναι 1000 φορές μικρότερη από τη σχετική μοριακή μάζα (μοριακό βάρος) Μr.
Μ=Μr/1000
  • Συγκέντρωση C ενός διαλύματος (Molarity) είναι τα moles διαλυμένης ουσίας που περιέχονται σε όγκο V ενός λίτρου διαλύματος. Η συγκέντρωση συνήθως μετριέται σε mol/L.
C=n/V(L)

Ιστορία του όρου[Επεξεργασία | επεξεργασία κώδικα]

Στις αρχές του 20ου αιώνα αρχίζει να γίνεται με σαφήνεια ο διαχωρισμός μεταξύ της έννοιας του μορίου και της έννοιας του ατόμου. Έτσι προκύπτει η αναγκαιότητα για τον ποσοτικό προσδιορισμό ενός μακροσκοπικού μεγέθους που θα δείχνει πόσα στοιχειώδη σωματίδια περιέχονται σε μία «ποσότητα ουσίας». Ο George Gorin αναφέρει ότι ο πρώτος που εισάγει την έννοια του mole ως μονάδα μέτρησης της «ποσότητας μίας ουσίας» είναι ο Wilhelm Ostwald που το 1900 αναφέρει: [. . . das in Grammen augedruckte [. . .] Molekulargewicht eines Stoffes soll fortan ein Mol heissen] (Το αναγόμενο σε γραμμάρια μοριακό βάρος θα ονομάζεται Mol από εδώ και πέρα). Ο ίδιος αργότερα συνδέει το mole και με τον γραμμομοριακό όγκο του ιδανικού αερίου σε συνθήκες STP: [eine solche Menge irgendeines Gases, welche das Volum von 22412 cm³ im Normalzustand einnimt nennt man ein Mol]" (μία τέτοια ποσότητα ιδανικού αερίου που καταλαμβάνει όγκο 22.412 cm3 σε κανονικές συνθήκες θα ονομάζεται 1 mol). Ο Ostwald προτιμάει τον όρο mole (moles: μεγάλη μάζα) για να εκφράσει την έννοια «gram-molecule» που χρησιμοποιείται στην εποχή του καθώς η λέξη «molecule» προϊδεάζει ότι πρόκειται για μικρή μάζα. Ο ορισμός του mole μέχρι τα μέσα του εικοστού αιώνα διχάζει τους φυσικούς και τους χημικούς. Η διεθνής ένωση φυσικών IUPAP το ορίζει σαν την ποσότητα ατόμων που περιέχονται σε 16 γραμμάρια του ισοτόπου του οξυγόνου-16 (16Ο) ενώ η διεθνής ένωση χημικών IUPAC το ορίζει σαν την ποσότητα ατόμων που περιέχονται σε 16 γραμμάρια οξυγόνου (σύνηθες μείγμα ισοτόπων). Η διαφορά μεταξύ των δύο αυτών ορισμών είναι βέβαια πολύ μικρή αλλά ικανή να επιφέρει σύγχυση στις αναφορές των πειραματικών μετρήσεων. Το 1960 οι δύο ενώσεις συμφωνούν στο σημερινό ορισμό του mole και το 1971 γίνεται δεκτός από το 14ο συνέδριο μέτρων και σταθμών (CGPM). Το 1980 το CIPM διευκρινίζει ότι στον ορισμό του mole τα άτομα του άνθρακα-12 (12C) θα πρέπει να είναι ελεύθερα από χημικούς δεσμούς και στη θεμελιώδη ενεργειακή τους κατάσταση.

Η αναγκαιότητα[Επεξεργασία | επεξεργασία κώδικα]

Πολλές από τις ιδιότητες των υλικών σωμάτων δεν στηρίζονται στη μάζα ή στον όγκο που καταλαμβάνουν αυτά αλλά στην ποσότητα των διακεκριμένων σωματίων που περιέχουν, ανεξάρτητα από το είδος τους, τη μάζα τους ή τον όγκο που καταλαμβάνουν. Έτσι ο ορισμός μίας συγκεκριμένης ποσότητας σωματίων ήταν αναγκαίος για την εκτίμηση των τιμών των ιδιοτήτων αυτών και για την εξεύρεση των ποσοτικών σχέσεων που τις περιγράφουν. Ο προσδιορισμός της ποσότητας της ύλης με τον αριθμό των moles (διεθνές σύμβολο n) εμφανίζεται ως αναγκαιότητα σε περιπτώσεις όπως:

Στις χημικές αντιδράσεις[Επεξεργασία | επεξεργασία κώδικα]

Οι συντελεστές της χημικής εξίσωσης κάθε αντίδρασης δείχνουν τον αριθμό των μορίων (ή διακεκριμένων σωματίων) που συμμετέχουν σε αυτή και κατ’ επέκταση την αναλογία των moles με την οποία οι ουσίες συμμετέχουν στην αντίδραση. Έτσι στην παρακάτω αντίδραση καύσης:

CH3CH2OH + 3O2 2CO2 + 3H2O
1 mol
οινοπνεύματος
καίγεται
με
3 mol
οξυγόνου  
και
παράγει 
2 mol
διοξειδίου
του άνθρακα
και   3 mol
νερού

Στις προσθετικές ιδιότητες των μη ιοντικών διαλυμάτων[Επεξεργασία | επεξεργασία κώδικα]

Οι ιδιότητες αυτές εξαρτώνται μόνο από τον αριθμό των μορίων του σώματος που είναι διαλυμένο ανά μονάδα όγκου του διαλύματος. Έτσι οι τιμές των προσθετικών ιδιοτήτων είναι ουσιαστικά συνάρτηση της συγκέντρωση του διαλύματος. Οι προσθετικές αυτές ιδιότητες είναι:

    1. Η πτώση τάσης των ατμών του διαλύτη κατά τη διάλυση μίας μοριακής ουσίας. Η τιμή της τάσης του διαλύματος καθορίζεται από το νόμο του Raoult.
    2. Η ανύψωση του σημείου του σημείου βρασμού του διαλύματος σε σχέση με το σημείο βρασμού του καθαρού διαλύτη και η ταπείνωση του σημείου τήξης του διαλύματος σε σχέση με το σημείο τήξης του καθαρού διαλύτη. Οι ιδιότητες αυτές είναι ανάλογες με τη συγκέντρωση του διαλύματος.
    3. Η ωσμωτική πίεση του διαλύματος. Η τιμή της ωσμωτικής πίεσης είναι ανάλογη με τη συγκέντρωση του διαλύματος και καθορίζεται από το νόμο Van’t Hoff.

Στη σχέση μεταξύ πίεσης – όγκου – θερμοκρασίας των αερίων που συμπεριφέρονται ως ιδανικά[Επεξεργασία | επεξεργασία κώδικα]

Η σχέση αυτή που ονομάζεται και καταστατική εξίσωση των ιδανικών αερίων είναι η παρακάτω:

PV=nRT

όπου P: η πίεση του αερίου, V ο όγκος του, n o αριθμός των moles, Τ η απόλυτη θερμοκρασία και R η παγκόσμια σταθερά των αερίων.

Στον προσδιορισμό της τιμής της εσωτερικής ενέργειας των αερίων[Επεξεργασία | επεξεργασία κώδικα]

Η εσωτερική ενέργεια ενός αερίου είναι ανάλογη του αριθμού των moles που περιέχει.

Στον προσδιορισμό της θερμότητας που ανταλλάσσουν τα σώματα[Επεξεργασία | επεξεργασία κώδικα]

Η θερμότητα που λαμβάνει ή αποδίδει ένα σώμα δίνεται από τη σχέση:

Q=nCΔT

όπου Q η θερμότητα, n ο αριθμός των moles, ΔT η μεταβολή της θερμοκρασίας και C η γραμμομοριακή ειδική θερμότητα του σώματος.

Αναφορές[Επεξεργασία | επεξεργασία κώδικα]

  1. Gorin George, "Mole and Chemical Amount: A Discussion of the Fundamental Measurements of Chemistry", Journal of Chemical Education, vol.71 No.2, p. 114-116, Feb. 1994
  2. Ostwald, W. «Grundriss der allgemeinen Chemie»; Leipzig: Engelmann, p. 11, 1900
  3. Ostwald, W. «Grundriss der allgemeinen Chemie», 5th ed., Dresden: Steinkopff, 1917, p. 44

Δείτε επίσης[Επεξεργασία | επεξεργασία κώδικα]

Εξωτερικοί σύνδεσμοι[Επεξεργασία | επεξεργασία κώδικα]